|
|
|
@ -19,16 +19,20 @@ class NetworkGraph(): |
|
|
|
|
def __init__(self, graph_struct): |
|
|
|
|
self.graph_struct = graph_struct |
|
|
|
|
self.graph = nx.DiGraph() |
|
|
|
|
self.scalar_indexing_structure = [] |
|
|
|
|
self.transition_scalar_indexing_structure = [] |
|
|
|
|
self.filtering_structure = [] |
|
|
|
|
self.transition_filtering = [] |
|
|
|
|
self._nodes_indexes = self.graph_struct.list_of_nodes_indexes() |
|
|
|
|
self._nodes_labels = self.graph_struct.list_of_nodes_labels() |
|
|
|
|
self._fancy_indexing = None |
|
|
|
|
self._time_scalar_indexing_structure = [] |
|
|
|
|
self._transition_scalar_indexing_structure = [] |
|
|
|
|
self._time_filtering = [] |
|
|
|
|
self._transition_filtering = [] |
|
|
|
|
|
|
|
|
|
def init_graph(self): |
|
|
|
|
self.add_nodes(self.graph_struct.list_of_nodes()) |
|
|
|
|
self.add_nodes(self.graph_struct.list_of_nodes_labels()) |
|
|
|
|
self.add_edges(self.graph_struct.list_of_edges()) |
|
|
|
|
self.build_scalar_indexing_structure() |
|
|
|
|
self.build_columns_filtering_structure() |
|
|
|
|
self._fancy_indexing = self.build_fancy_indexing_structure(0) |
|
|
|
|
self.build_time_scalar_indexing_structure() |
|
|
|
|
self.build_time_columns_filtering_structure() |
|
|
|
|
self.build_transition_scalar_indexing_structure() |
|
|
|
|
self.build_transition_columns_filtering_structure() |
|
|
|
|
|
|
|
|
@ -44,34 +48,33 @@ class NetworkGraph(): |
|
|
|
|
ordered_set = {} |
|
|
|
|
parents = self.get_parents_by_id(node) |
|
|
|
|
for n in parents: |
|
|
|
|
indx = self.graph_struct.get_node_indx(n) |
|
|
|
|
indx = self._nodes_labels.index(n) |
|
|
|
|
ordered_set[n] = indx |
|
|
|
|
{k: v for k, v in sorted(ordered_set.items(), key=lambda item: item[1])} |
|
|
|
|
return list(ordered_set.keys()) |
|
|
|
|
|
|
|
|
|
def get_ord_set_of_par_of_all_nodes(self): |
|
|
|
|
result = [] |
|
|
|
|
for node in self.get_nodes(): |
|
|
|
|
for node in self._nodes_labels: |
|
|
|
|
result.append(self.get_ordered_by_indx_set_of_parents(node)) |
|
|
|
|
return result |
|
|
|
|
|
|
|
|
|
def get_ordered_by_indx_parents_values(self, node): |
|
|
|
|
parents_values = [] |
|
|
|
|
parents = self.get_parents_by_id(node) |
|
|
|
|
parents.sort() #Assumo che la structure rifletta l'ordine delle colonne del dataset |
|
|
|
|
parents = self.get_ordered_by_indx_set_of_parents(node) |
|
|
|
|
for n in parents: |
|
|
|
|
parents_values.append(self.graph_struct.get_states_number(n)) |
|
|
|
|
return parents_values |
|
|
|
|
|
|
|
|
|
def get_ordered_by_indx_parents_values_for_all_nodes(self): |
|
|
|
|
result = [] |
|
|
|
|
for node in self.get_nodes(): #TODO bisogna essere sicuri che l'ordine sia coerente con quello del dataset serve un metodo get_nodes_sort_by_indx |
|
|
|
|
for node in self._nodes_labels: |
|
|
|
|
result.append(self.get_ordered_by_indx_parents_values(node)) |
|
|
|
|
return result |
|
|
|
|
|
|
|
|
|
def get_states_number_of_all_nodes_sorted(self): |
|
|
|
|
states_number_list = [] |
|
|
|
|
for node in self.get_nodes(): #TODO SERVE UN get_nodes_ordered!!!!!! |
|
|
|
|
for node in self._nodes_labels: |
|
|
|
|
states_number_list.append(self.get_states_number(node)) |
|
|
|
|
return states_number_list |
|
|
|
|
|
|
|
|
@ -85,24 +88,24 @@ class NetworkGraph(): |
|
|
|
|
index_structure.append(np.array(indexes_for_a_node, dtype=np.int)) |
|
|
|
|
return index_structure |
|
|
|
|
|
|
|
|
|
def build_scalar_indexing_structure_for_a_node(self, node_id, parents_id): |
|
|
|
|
print(parents_id) |
|
|
|
|
def build_time_scalar_indexing_structure_for_a_node(self, node_id, parents_id): |
|
|
|
|
#print(parents_id) |
|
|
|
|
T_vector = np.array([self.graph_struct.variables_frame.iloc[node_id, 1].astype(np.int)]) |
|
|
|
|
print(T_vector) |
|
|
|
|
#print(T_vector) |
|
|
|
|
T_vector = np.append(T_vector, [self.graph_struct.variables_frame.iloc[x, 1] for x in parents_id]) |
|
|
|
|
print(T_vector) |
|
|
|
|
#print(T_vector) |
|
|
|
|
T_vector = T_vector.cumprod().astype(np.int) |
|
|
|
|
return T_vector |
|
|
|
|
print(T_vector) |
|
|
|
|
#print(T_vector) |
|
|
|
|
|
|
|
|
|
def build_scalar_indexing_structure(self): |
|
|
|
|
parents_indexes_list = self.build_fancy_indexing_structure(0) |
|
|
|
|
def build_time_scalar_indexing_structure(self): |
|
|
|
|
parents_indexes_list = self._fancy_indexing |
|
|
|
|
for node_indx, p_indxs in enumerate(parents_indexes_list): |
|
|
|
|
if p_indxs.size == 0: |
|
|
|
|
self.scalar_indexing_structure.append(np.array([self.get_states_number_by_indx(node_indx)], dtype=np.int)) |
|
|
|
|
self._time_scalar_indexing_structure.append(np.array([self.get_states_number_by_indx(node_indx)], dtype=np.int)) |
|
|
|
|
else: |
|
|
|
|
self.scalar_indexing_structure.append( |
|
|
|
|
self.build_scalar_indexing_structure_for_a_node(node_indx, p_indxs)) |
|
|
|
|
self._time_scalar_indexing_structure.append( |
|
|
|
|
self.build_time_scalar_indexing_structure_for_a_node(node_indx, p_indxs)) |
|
|
|
|
|
|
|
|
|
def build_transition_scalar_indexing_structure_for_a_node(self, node_id, parents_id): |
|
|
|
|
M_vector = np.array([self.graph_struct.variables_frame.iloc[node_id, 1], |
|
|
|
@ -112,32 +115,24 @@ class NetworkGraph(): |
|
|
|
|
return M_vector |
|
|
|
|
|
|
|
|
|
def build_transition_scalar_indexing_structure(self): |
|
|
|
|
parents_indexes_list = self.build_fancy_indexing_structure(0) |
|
|
|
|
parents_indexes_list = self._fancy_indexing |
|
|
|
|
for node_indx, p_indxs in enumerate(parents_indexes_list): |
|
|
|
|
"""if p_indxs.size == 0: |
|
|
|
|
self.scalar_indexing_structure.append( |
|
|
|
|
np.array([self.get_states_number_by_indx(node_indx)], dtype=np.int)) |
|
|
|
|
else:""" |
|
|
|
|
self.transition_scalar_indexing_structure.append( |
|
|
|
|
self._transition_scalar_indexing_structure.append( |
|
|
|
|
self.build_transition_scalar_indexing_structure_for_a_node(node_indx, p_indxs)) |
|
|
|
|
|
|
|
|
|
def build_columns_filtering_structure(self): |
|
|
|
|
parents_indexes_list = self.build_fancy_indexing_structure(0) |
|
|
|
|
def build_time_columns_filtering_structure(self): |
|
|
|
|
parents_indexes_list = self._fancy_indexing |
|
|
|
|
for node_indx, p_indxs in enumerate(parents_indexes_list): |
|
|
|
|
if p_indxs.size == 0: |
|
|
|
|
self.filtering_structure.append(np.append(p_indxs, np.array([node_indx], dtype=np.int))) |
|
|
|
|
self._time_filtering.append(np.append(p_indxs, np.array([node_indx], dtype=np.int))) |
|
|
|
|
else: |
|
|
|
|
self.filtering_structure.append(np.append(np.array([node_indx], dtype=np.int), p_indxs)) |
|
|
|
|
self._time_filtering.append(np.append(np.array([node_indx], dtype=np.int), p_indxs)) |
|
|
|
|
|
|
|
|
|
def build_transition_columns_filtering_structure(self): |
|
|
|
|
parents_indexes_list = self.build_fancy_indexing_structure(0) |
|
|
|
|
parents_indexes_list = self._fancy_indexing |
|
|
|
|
nodes_number = len(parents_indexes_list) |
|
|
|
|
for node_indx, p_indxs in enumerate(parents_indexes_list): |
|
|
|
|
#if p_indxs.size == 0: |
|
|
|
|
#self.filtering_structure.append(np.append(p_indxs, np.array([node_indx], dtype=np.int))) |
|
|
|
|
#else: |
|
|
|
|
self.transition_filtering.append(np.array([node_indx + nodes_number, node_indx, *p_indxs], dtype=np.int)) |
|
|
|
|
|
|
|
|
|
self._transition_filtering.append(np.array([node_indx + nodes_number, node_indx, *p_indxs], dtype=np.int)) |
|
|
|
|
|
|
|
|
|
def get_nodes(self): |
|
|
|
|
return list(self.graph.nodes) |
|
|
|
@ -160,6 +155,21 @@ class NetworkGraph(): |
|
|
|
|
def get_node_indx(self, node_id): |
|
|
|
|
return nx.get_node_attributes(self.graph, 'indx')[node_id] |
|
|
|
|
|
|
|
|
|
@property |
|
|
|
|
def time_scalar_indexing_strucure(self): |
|
|
|
|
return self._time_scalar_indexing_structure |
|
|
|
|
|
|
|
|
|
@property |
|
|
|
|
def time_filtering(self): |
|
|
|
|
return self._time_filtering |
|
|
|
|
|
|
|
|
|
@property |
|
|
|
|
def transition_scalar_indexing_structure(self): |
|
|
|
|
return self._transition_scalar_indexing_structure |
|
|
|
|
|
|
|
|
|
@property |
|
|
|
|
def transition_filtering(self): |
|
|
|
|
return self._transition_filtering |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -175,14 +185,12 @@ s1.build_structure() |
|
|
|
|
|
|
|
|
|
g1 = NetworkGraph(s1.structure) |
|
|
|
|
g1.init_graph() |
|
|
|
|
print(g1.graph.number_of_nodes()) |
|
|
|
|
print(g1.graph.number_of_edges()) |
|
|
|
|
|
|
|
|
|
print(nx.get_node_attributes(g1.graph, 'indx')['X']) |
|
|
|
|
for node in g1.get_parents_by_id('Z'): |
|
|
|
|
# print(g1.get_node_by_index(node)) |
|
|
|
|
print(node) |
|
|
|
|
print(g1.get_ordered_by_indx_parents_values_for_all_nodes()) |
|
|
|
|
print(g1.transition_scalar_indexing_structure) |
|
|
|
|
print(g1.transition_filtering) |
|
|
|
|
print(g1.time_scalar_indexing_strucure) |
|
|
|
|
print(g1.time_filering) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#print(g1.build_fancy_indexing_structure(0)) |
|
|
|
|
#print(g1.get_states_number_of_all_nodes_sorted()) |
|
|
|
|
g1.build_scalar_indexing_structure() |
|
|
|
|