From c60001426a9ca979161a0ca070b3ab0ee945fe9f Mon Sep 17 00:00:00 2001 From: philpMartin Date: Tue, 7 Jul 2020 22:50:03 +0200 Subject: [PATCH] Refactors on JsonImporterClass --- main_package/classes/json_importer.py | 87 +++++++++------- main_package/classes/network_graph.py | 102 ++++++++++--------- main_package/classes/parameters_estimator.py | 97 +++--------------- main_package/classes/sample_path.py | 22 ++-- main_package/classes/set_of_cims.py | 2 + main_package/classes/structure.py | 22 ++-- main_package/classes/trajectory.py | 31 +++--- 7 files changed, 165 insertions(+), 198 deletions(-) diff --git a/main_package/classes/json_importer.py b/main_package/classes/json_importer.py index cc720f4..3ea4c33 100644 --- a/main_package/classes/json_importer.py +++ b/main_package/classes/json_importer.py @@ -3,6 +3,7 @@ import glob import pandas as pd import json from abstract_importer import AbstractImporter +from line_profiler import LineProfiler class JsonImporter(AbstractImporter): @@ -23,26 +24,29 @@ class JsonImporter(AbstractImporter): def __init__(self, files_path): self.df_samples_list = [] - self.df_structure = pd.DataFrame() - self.df_variables = pd.DataFrame() - self.concatenated_samples = None + self._df_structure = pd.DataFrame() + self._df_variables = pd.DataFrame() + self._concatenated_samples = None super(JsonImporter, self).__init__(files_path) def import_data(self): raw_data = self.read_json_file() self.import_trajectories(raw_data) - self.compute_row_delta_in_all_samples_frames() + self.compute_row_delta_in_all_samples_frames('Time') self.import_structure(raw_data) self.import_variables(raw_data) + #Le variabili DEVONO essere ordinate come le Colonne del dataset + assert list(self._df_variables['Name']) == \ + (list(self._concatenated_samples.columns.values[1:len(self.variables['Name']) + 1])) def import_trajectories(self, raw_data): self.normalize_trajectories(raw_data, 0, 'samples') def import_structure(self, raw_data): - self.df_structure = self.one_level_normalizing(raw_data, 0, 'dyn.str') + self._df_structure = self.one_level_normalizing(raw_data, 0, 'dyn.str') def import_variables(self, raw_data): - self.df_variables = self.one_level_normalizing(raw_data, 0, 'variables') + self._df_variables = self.one_level_normalizing(raw_data, 0, 'variables') def read_json_file(self): """ @@ -89,34 +93,27 @@ class JsonImporter(AbstractImporter): void """ for sample_indx, sample in enumerate(raw_data[indx][trajectories_key]): - self.df_samples_list.append(pd.json_normalize(raw_data[indx][trajectories_key][sample_indx])) - #print(sample_indx, self.df_samples_list[sample_indx]) - - def compute_row_delta_sigle_samples_frame(self, sample_frame): - columns_header = list(sample_frame.columns.values) - #print(columns_header) - for col_name in columns_header: - if col_name == 'Time': - sample_frame[col_name + 'Delta'] = sample_frame[col_name].diff() - else: - sample_frame[col_name + 'Delta'] = sample_frame[col_name] - sample_frame['Time'] = sample_frame['TimeDelta'] - del sample_frame['TimeDelta'] - sample_frame['Time'] = sample_frame['Time'].shift(-1) - columns_header = list(sample_frame.columns.values) - #print(columns_header[4:]) #TODO rimuovere dipendeza diretta da 'Time' e 4 - for column in columns_header[4:]: - sample_frame[column] = sample_frame[column].shift(-1) - #sample_frame[column] = sample_frame[column].fillna(0)""" + self.df_samples_list.append(pd.DataFrame(sample)) + + def compute_row_delta_sigle_samples_frame(self, sample_frame, time_header_label, columns_header, shifted_cols_header): + sample_frame[time_header_label] = sample_frame[time_header_label].diff().shift(-1) + shifted_cols = sample_frame[columns_header[1:]].shift(-1) + shifted_cols.columns = shifted_cols_header + sample_frame = sample_frame.assign(**shifted_cols) sample_frame.drop(sample_frame.tail(1).index, inplace=True) - #print("After Time Delta",sample_frame) + return sample_frame - def compute_row_delta_in_all_samples_frames(self): + def compute_row_delta_in_all_samples_frames(self, time_header_label): + columns_header = list(self.df_samples_list[0].columns.values) + shifted_cols_header = [s + "S" for s in columns_header[1:]] for indx, sample in enumerate(self.df_samples_list): - #print(indx) - #print(self.df_samples_list[299]) - self.compute_row_delta_sigle_samples_frame(sample) - self.concatenated_samples = pd.concat(self.df_samples_list) + self.df_samples_list[indx] = self.compute_row_delta_sigle_samples_frame(sample, + time_header_label, columns_header, shifted_cols_header) + #print(self.df_samples_list[indx]) + self._concatenated_samples = pd.concat(self.df_samples_list) + #print("Concatenated", self._concatenated_samples) + for indx in range(len(self.df_samples_list)): # Le singole traj non servono piĆ¹ + self.df_samples_list[indx] = self.df_samples_list[indx].iloc[0:0] def build_list_of_samples_array(self, data_frame): """ @@ -140,17 +137,31 @@ class JsonImporter(AbstractImporter): Returns: void """ - for indx in range(len(self.df_samples_list)): - self.df_samples_list[indx] = self.df_samples_list[indx].iloc[0:0] - self.concatenated_samples = self.concatenated_samples.iloc[0:0] + self._concatenated_samples = self._concatenated_samples.iloc[0:0] + + @property + def concatenated_samples(self): + return self._concatenated_samples + @property + def variables(self): + return self._df_variables + + @property + def structure(self): + return self._df_structure """ij = JsonImporter("../data") +#raw_data = ij.read_json_file() +lp = LineProfiler() +lp_wrapper = lp(ij.import_data) +lp_wrapper() +lp.print_stats() + + ij.import_data() #print(ij.df_samples_list[7]) print(ij.df_structure) print(ij.df_variables) -print(ij.concatenated_samples) -#print((ij.build_list_of_samples_array(0)[1].size)) -#ij.compute_row_delta_in_all_samples_frames() -#print(ij.df_samples_list[0])""" +print(ij.concatenated_samples)""" + diff --git a/main_package/classes/network_graph.py b/main_package/classes/network_graph.py index 33226c6..f2b5e28 100644 --- a/main_package/classes/network_graph.py +++ b/main_package/classes/network_graph.py @@ -19,16 +19,20 @@ class NetworkGraph(): def __init__(self, graph_struct): self.graph_struct = graph_struct self.graph = nx.DiGraph() - self.scalar_indexing_structure = [] - self.transition_scalar_indexing_structure = [] - self.filtering_structure = [] - self.transition_filtering = [] + self._nodes_indexes = self.graph_struct.list_of_nodes_indexes() + self._nodes_labels = self.graph_struct.list_of_nodes_labels() + self._fancy_indexing = None + self._time_scalar_indexing_structure = [] + self._transition_scalar_indexing_structure = [] + self._time_filtering = [] + self._transition_filtering = [] def init_graph(self): - self.add_nodes(self.graph_struct.list_of_nodes()) + self.add_nodes(self.graph_struct.list_of_nodes_labels()) self.add_edges(self.graph_struct.list_of_edges()) - self.build_scalar_indexing_structure() - self.build_columns_filtering_structure() + self._fancy_indexing = self.build_fancy_indexing_structure(0) + self.build_time_scalar_indexing_structure() + self.build_time_columns_filtering_structure() self.build_transition_scalar_indexing_structure() self.build_transition_columns_filtering_structure() @@ -44,34 +48,33 @@ class NetworkGraph(): ordered_set = {} parents = self.get_parents_by_id(node) for n in parents: - indx = self.graph_struct.get_node_indx(n) + indx = self._nodes_labels.index(n) ordered_set[n] = indx {k: v for k, v in sorted(ordered_set.items(), key=lambda item: item[1])} return list(ordered_set.keys()) def get_ord_set_of_par_of_all_nodes(self): result = [] - for node in self.get_nodes(): + for node in self._nodes_labels: result.append(self.get_ordered_by_indx_set_of_parents(node)) return result def get_ordered_by_indx_parents_values(self, node): parents_values = [] - parents = self.get_parents_by_id(node) - parents.sort() #Assumo che la structure rifletta l'ordine delle colonne del dataset + parents = self.get_ordered_by_indx_set_of_parents(node) for n in parents: parents_values.append(self.graph_struct.get_states_number(n)) return parents_values def get_ordered_by_indx_parents_values_for_all_nodes(self): result = [] - for node in self.get_nodes(): #TODO bisogna essere sicuri che l'ordine sia coerente con quello del dataset serve un metodo get_nodes_sort_by_indx + for node in self._nodes_labels: result.append(self.get_ordered_by_indx_parents_values(node)) return result def get_states_number_of_all_nodes_sorted(self): states_number_list = [] - for node in self.get_nodes(): #TODO SERVE UN get_nodes_ordered!!!!!! + for node in self._nodes_labels: states_number_list.append(self.get_states_number(node)) return states_number_list @@ -85,24 +88,24 @@ class NetworkGraph(): index_structure.append(np.array(indexes_for_a_node, dtype=np.int)) return index_structure - def build_scalar_indexing_structure_for_a_node(self, node_id, parents_id): - print(parents_id) + def build_time_scalar_indexing_structure_for_a_node(self, node_id, parents_id): + #print(parents_id) T_vector = np.array([self.graph_struct.variables_frame.iloc[node_id, 1].astype(np.int)]) - print(T_vector) + #print(T_vector) T_vector = np.append(T_vector, [self.graph_struct.variables_frame.iloc[x, 1] for x in parents_id]) - print(T_vector) + #print(T_vector) T_vector = T_vector.cumprod().astype(np.int) return T_vector - print(T_vector) + #print(T_vector) - def build_scalar_indexing_structure(self): - parents_indexes_list = self.build_fancy_indexing_structure(0) + def build_time_scalar_indexing_structure(self): + parents_indexes_list = self._fancy_indexing for node_indx, p_indxs in enumerate(parents_indexes_list): if p_indxs.size == 0: - self.scalar_indexing_structure.append(np.array([self.get_states_number_by_indx(node_indx)], dtype=np.int)) + self._time_scalar_indexing_structure.append(np.array([self.get_states_number_by_indx(node_indx)], dtype=np.int)) else: - self.scalar_indexing_structure.append( - self.build_scalar_indexing_structure_for_a_node(node_indx, p_indxs)) + self._time_scalar_indexing_structure.append( + self.build_time_scalar_indexing_structure_for_a_node(node_indx, p_indxs)) def build_transition_scalar_indexing_structure_for_a_node(self, node_id, parents_id): M_vector = np.array([self.graph_struct.variables_frame.iloc[node_id, 1], @@ -112,32 +115,24 @@ class NetworkGraph(): return M_vector def build_transition_scalar_indexing_structure(self): - parents_indexes_list = self.build_fancy_indexing_structure(0) + parents_indexes_list = self._fancy_indexing for node_indx, p_indxs in enumerate(parents_indexes_list): - """if p_indxs.size == 0: - self.scalar_indexing_structure.append( - np.array([self.get_states_number_by_indx(node_indx)], dtype=np.int)) - else:""" - self.transition_scalar_indexing_structure.append( + self._transition_scalar_indexing_structure.append( self.build_transition_scalar_indexing_structure_for_a_node(node_indx, p_indxs)) - def build_columns_filtering_structure(self): - parents_indexes_list = self.build_fancy_indexing_structure(0) + def build_time_columns_filtering_structure(self): + parents_indexes_list = self._fancy_indexing for node_indx, p_indxs in enumerate(parents_indexes_list): if p_indxs.size == 0: - self.filtering_structure.append(np.append(p_indxs, np.array([node_indx], dtype=np.int))) + self._time_filtering.append(np.append(p_indxs, np.array([node_indx], dtype=np.int))) else: - self.filtering_structure.append(np.append(np.array([node_indx], dtype=np.int), p_indxs)) + self._time_filtering.append(np.append(np.array([node_indx], dtype=np.int), p_indxs)) def build_transition_columns_filtering_structure(self): - parents_indexes_list = self.build_fancy_indexing_structure(0) + parents_indexes_list = self._fancy_indexing nodes_number = len(parents_indexes_list) for node_indx, p_indxs in enumerate(parents_indexes_list): - #if p_indxs.size == 0: - #self.filtering_structure.append(np.append(p_indxs, np.array([node_indx], dtype=np.int))) - #else: - self.transition_filtering.append(np.array([node_indx + nodes_number, node_indx, *p_indxs], dtype=np.int)) - + self._transition_filtering.append(np.array([node_indx + nodes_number, node_indx, *p_indxs], dtype=np.int)) def get_nodes(self): return list(self.graph.nodes) @@ -160,6 +155,21 @@ class NetworkGraph(): def get_node_indx(self, node_id): return nx.get_node_attributes(self.graph, 'indx')[node_id] + @property + def time_scalar_indexing_strucure(self): + return self._time_scalar_indexing_structure + + @property + def time_filtering(self): + return self._time_filtering + + @property + def transition_scalar_indexing_structure(self): + return self._transition_scalar_indexing_structure + + @property + def transition_filtering(self): + return self._transition_filtering @@ -175,14 +185,12 @@ s1.build_structure() g1 = NetworkGraph(s1.structure) g1.init_graph() -print(g1.graph.number_of_nodes()) -print(g1.graph.number_of_edges()) - -print(nx.get_node_attributes(g1.graph, 'indx')['X']) -for node in g1.get_parents_by_id('Z'): - # print(g1.get_node_by_index(node)) - print(node) -print(g1.get_ordered_by_indx_parents_values_for_all_nodes()) +print(g1.transition_scalar_indexing_structure) +print(g1.transition_filtering) +print(g1.time_scalar_indexing_strucure) +print(g1.time_filering) + + #print(g1.build_fancy_indexing_structure(0)) #print(g1.get_states_number_of_all_nodes_sorted()) g1.build_scalar_indexing_structure() diff --git a/main_package/classes/parameters_estimator.py b/main_package/classes/parameters_estimator.py index b2bd8f5..e5865ee 100644 --- a/main_package/classes/parameters_estimator.py +++ b/main_package/classes/parameters_estimator.py @@ -14,10 +14,10 @@ class ParametersEstimator: def __init__(self, sample_path, net_graph): self.sample_path = sample_path self.net_graph = net_graph - self.scalar_indexes_converter = self.net_graph.scalar_indexing_structure - self.columns_filtering_structure = self.net_graph.filtering_structure - self.transition_scalar_index_converter = self.net_graph.transition_scalar_indexing_structure - self.transition_filtering = self.net_graph.transition_filtering + #self.scalar_indexes_converter = self.net_graph. + #self.columns_filtering_structure = self.net_graph.filtering_structure + #self.transition_scalar_index_converter = self.net_graph.transition_scalar_indexing_structure + #self.transition_filtering = self.net_graph.transition_filtering self.amalgamated_cims_struct = None def init_amalgamated_cims_struct(self): @@ -190,22 +190,22 @@ class ParametersEstimator: def compute_parameters(self): for node_indx, set_of_cims in enumerate(self.amalgamated_cims_struct.sets_of_cims): - self.compute_state_res_time_for_node(node_indx, self.sample_path.trajectories[0].get_times(), - self.sample_path.trajectories[0].get_trajectory(), - self.columns_filtering_structure[node_indx], - self.scalar_indexes_converter[node_indx], + self.compute_state_res_time_for_node(node_indx, self.sample_path.trajectories.times, + self.sample_path.trajectories.trajectory, + self.net_graph.time_filtering[node_indx], + self.net_graph.time_scalar_indexing_strucure[node_indx], set_of_cims.state_residence_times) self.compute_state_transitions_for_a_node(node_indx, - self.sample_path.trajectories[0].get_complete_trajectory(), - self.transition_filtering[node_indx], - self.transition_scalar_index_converter[node_indx], + self.sample_path.trajectories.complete_trajectory, + self.net_graph.transition_filtering[node_indx], + self.net_graph.transition_scalar_indexing_structure[node_indx], set_of_cims.transition_matrices) set_of_cims.build_cims(set_of_cims.state_residence_times, set_of_cims.transition_matrices) def compute_state_res_time_for_node(self, node_indx, times, trajectory, cols_filter, scalar_indexes_struct, T): - #print(times) + #print(times.size) #print(trajectory) #print(cols_filter) #print(scalar_indexes_struct) @@ -270,80 +270,7 @@ g1.init_graph() pe = ParametersEstimator(s1, g1) pe.init_amalgamated_cims_struct() -#print(pe.amalgamated_cims_struct.get_set_of_cims(0).get_cims_number()) -#print(pe.amalgamated_cims_struct.get_set_of_cims(1).get_cims_number()) -#print(pe.amalgamated_cims_struct.get_set_of_cims(2).get_cims_number()) -#print(np.shape(s1.trajectories[0].transitions)[0]) -#print(pe.columns_filtering_structure) -#print(pe.scalar_indexes_converter) -#print(pe.amalgamated_cims_struct.sets_of_cims[1].state_residence_times) -#print(pe.amalgamated_cims_struct.sets_of_cims[2].state_residence_times) -#print(pe.amalgamated_cims_struct.sets_of_cims[2].transition_matrices) -#print(pe.amalgamated_cims_struct.sets_of_cims[1].transition_matrices) -#print(pe.amalgamated_cims_struct.sets_of_cims[0].transition_matrices) -#pe.compute_state_transitions_for_all_nodes() lp = LineProfiler() -"""pe.compute_state_residence_time_for_all_nodes() -#pe.parameters_estimation_for_variable(0, pe.sample_path.trajectories[0].get_trajectory()[:, 0], - # pe.sample_path.trajectories[0].get_trajectory()[:, 1], []) -#pe.parameters_estimation_single_trajectory(pe.sample_path.trajectories[0].get_trajectory()) -#pe.parameters_estimation() - -#lp.add_function(pe.compute_sufficient_statistics_for_row) # add additional function to profile -#lp_wrapper = lp(pe.parameters_estimation_single_trajectory) -#lp_wrapper = lp(pe.parameters_estimation) -#lp_wrapper(pe.sample_path.trajectories[0].get_trajectory()) -#lp.print_stats() - -#lp_wrapper = lp(pe.parameters_estimation_for_variable) -#lp_wrapper(2, pe.sample_path.trajectories[0].get_times(), - #pe.sample_path.trajectories[0].get_trajectory()[:, 2], - #pe.sample_path.trajectories[0].get_trajectory()[:, [0,1]]) - - -lp_wrapper = lp(pe.parameters_estimation_for_variable_single_parent) -lp_wrapper(1, pe.sample_path.trajectories[0].get_times(), - pe.sample_path.trajectories[0].get_trajectory()[:, 1], - pe.sample_path.trajectories[0].get_trajectory()[:, 2]) -lp.print_stats() - -#print( pe.sample_path.trajectories[0].get_trajectory()[:, [1,2]]) -for matrix in pe.amalgamated_cims_struct.get_set_of_cims(1).actual_cims: - print(matrix.state_residence_times) - print(matrix.state_transition_matrix) - matrix.compute_cim_coefficients() - print(matrix.cim)""" - -"""lp_wrapper = lp(pe.parameters_estimation_for_variable_no_parent_in_place) -lp_wrapper(0, pe.sample_path.trajectories[0].get_times(), pe.sample_path.trajectories[0].transitions[:, 0], - pe.sample_path.trajectories[0].get_trajectory()[:, 0] ) -lp.print_stats() - -lp_wrapper = lp(pe.parameters_estimation_for_variable_single_parent) -lp_wrapper(1, pe.sample_path.trajectories[0].get_times(), pe.sample_path.trajectories[0].transitions[:, 1], - pe.sample_path.trajectories[0].get_trajectory()[:,1], pe.sample_path.trajectories[0].get_trajectory()[:,2] ) -lp.print_stats() -lp_wrapper = lp(pe.parameters_estimation_for_variable_multiple_parents) -lp_wrapper(2, pe.sample_path.trajectories[0].get_times(), pe.sample_path.trajectories[0].transitions[:, 2], - pe.sample_path.trajectories[0].get_trajectory()[:,2], pe.sample_path.trajectories[0].get_trajectory()[:, [0,1]] ) -lp.print_stats()""" - -"""lp_wrapper = lp(pe.parameters_estimation_for_variable_single_parent_in_place) -lp_wrapper(1, pe.sample_path.trajectories[0].get_times(), pe.sample_path.trajectories[0].transitions[:, 1], - pe.sample_path.trajectories[0].get_trajectory()[:,1], pe.sample_path.trajectories[0].get_trajectory()[:,2], (3,3,3) ) -lp.print_stats()""" - -"""lp_wrapper = lp(pe.compute_sufficient_statistics_for_trajectory) -lp_wrapper(pe.sample_path.trajectories[0].get_times(), pe.sample_path.trajectories[0].actual_trajectory, - pe.sample_path.trajectories[0].transitions, 3) -lp.print_stats() - -lp_wrapper = lp(pe.compute_state_res_time_for_node) -lp_wrapper(0, pe.sample_path.trajectories[0].get_times(), - pe.sample_path.trajectories[0].actual_trajectory, [0], [3], np.zeros([3,3], dtype=np.float)) -lp.print_stats() -#pe.compute_state_res_time_for_node(0, pe.sample_path.trajectories[0].get_times(), - #pe.sample_path.trajectories[0].actual_trajectory, [0], [3], np.zeros([3,3], dtype=np.float))""" """[[2999.2966 2749.2298 3301.5975] [3797.1737 3187.8345 2939.2009] diff --git a/main_package/classes/sample_path.py b/main_package/classes/sample_path.py index 779a5e3..407f53e 100644 --- a/main_package/classes/sample_path.py +++ b/main_package/classes/sample_path.py @@ -19,23 +19,27 @@ class SamplePath: """ def __init__(self, files_path): - print() self.importer = imp.JsonImporter(files_path) - self.trajectories = [] - self.structure = None + self._trajectories = None + self._structure = None def build_trajectories(self): self.importer.import_data() - #for traj_data_frame in self.importer.df_samples_list: - trajectory = tr.Trajectory(self.importer.build_list_of_samples_array(self.importer.concatenated_samples)) - self.trajectories.append(trajectory) + self._trajectories = tr.Trajectory(self.importer.build_list_of_samples_array(self.importer.concatenated_samples)) + #self.trajectories.append(trajectory) self.importer.clear_data_frames() def build_structure(self): - self.structure = st.Structure(self.importer.df_structure, self.importer.df_variables) + self._structure = st.Structure(self.importer.structure, self.importer.variables) + + @property + def trajectories(self): + return self._trajectories + + @property + def structure(self): + return self._structure - def get_number_trajectories(self): - return len(self.trajectories) """os.getcwd() diff --git a/main_package/classes/set_of_cims.py b/main_package/classes/set_of_cims.py index d22271d..4d0dac8 100644 --- a/main_package/classes/set_of_cims.py +++ b/main_package/classes/set_of_cims.py @@ -88,6 +88,8 @@ class SetOfCims: cim_to_add.compute_cim_coefficients() #print(cim_to_add) self.actual_cims.append(cim_to_add) + self.transition_matrices = None + self.state_residence_times = None def get_cims(self): return self.actual_cims diff --git a/main_package/classes/structure.py b/main_package/classes/structure.py index 097f38a..7f1bea8 100644 --- a/main_package/classes/structure.py +++ b/main_package/classes/structure.py @@ -12,6 +12,9 @@ class Structure: def __init__(self, structure, variables): self.structure_frame = structure self.variables_frame = variables + #self._nodes_indexes = self.list_of_nodes_indexes() + self.name_label = variables.columns.values[0] + self.value_label = variables.columns.values[1] def list_of_edges(self): edges_list = [] @@ -20,17 +23,24 @@ class Structure: edges_list.append(row_tuple) return edges_list - def list_of_nodes(self): - return self.variables_frame['Name'].values.tolist() #TODO rimuovere dipendenza diretta dalla key 'Name' + def list_of_nodes_labels(self): + return self.variables_frame[self.name_label].values.tolist() + + def list_of_nodes_indexes(self): + nodes_indexes = [] + for indx in self.list_of_nodes_labels(): + nodes_indexes.append(indx) + return nodes_indexes def get_node_id(self, node_indx): - return self.variables_frame['Name'][node_indx] + return self.variables_frame[self.name_label][node_indx] def get_node_indx(self, node_id): - return list(self.variables_frame['Name']).index(node_id) + return list(self.variables_frame[self.name_label]).index(node_id) def get_states_number(self, node): - return self.variables_frame['Value'][self.get_node_indx(node)] + return self.variables_frame[self.value_label][self.get_node_indx(node)] def get_states_number_by_indx(self, node_indx): - return self.variables_frame['Value'][node_indx] + #print(self.value_label) + return self.variables_frame[self.value_label][node_indx] diff --git a/main_package/classes/trajectory.py b/main_package/classes/trajectory.py index a046604..a41fb6a 100644 --- a/main_package/classes/trajectory.py +++ b/main_package/classes/trajectory.py @@ -1,8 +1,8 @@ -import pandas as pd + import numpy as np -class Trajectory(): +class Trajectory: """ Rappresenta una traiettoria come un numpy_array contenente n-ple (indx, T_k,S_i,.....,Sj) Offre i metodi utili alla computazione sulla struttura stessa. @@ -15,17 +15,22 @@ class Trajectory(): """ def __init__(self, list_of_columns): - self.actual_trajectory = np.array(list_of_columns[1:], dtype=np.int).T - self.times = np.array(list_of_columns[0], dtype=np.float) - - def get_trajectory(self): - return self.actual_trajectory[:,:4] - - def get_complete_trajectory(self): - return self.actual_trajectory - - def get_times(self): - return self.times + print(list_of_columns) + self._actual_trajectory = np.array(list_of_columns[1:], dtype=np.int).T + self._times = np.array(list_of_columns[0], dtype=np.float) + print(self._times) + + @property + def trajectory(self): + return self._actual_trajectory[:, :4] + + @property + def complete_trajectory(self): + return self._actual_trajectory + + @property + def times(self): + return self._times def size(self): return self.actual_trajectory.shape[0]