1
0
Fork 0

Refactors on JSONImporter class and tests

parallel_struct_est
philpMartin 4 years ago
parent f32b79590f
commit 59cda0d3d9
  1. 68
      main_package/classes/abstract_importer.py
  2. 110
      main_package/classes/json_importer.py
  3. 19
      main_package/classes/sample_path.py
  4. 41
      main_package/tests/test_json_importer.py
  5. 16
      main_package/tests/test_sample_path.py

@ -5,17 +5,22 @@ import typing
class AbstractImporter(ABC): class AbstractImporter(ABC):
""" """
Interface that exposes all the necessary methods to import the trajectories and the net structure. Abstract class that exposes all the necessary methods to process the trajectories and the net structure.
:file_path: the file path :file_path: the file path
:_concatenated_samples: the concatenation of all the processed trajectories :_concatenated_samples: the concatenation of all the processed trajectories
:df_structure: Dataframe containing the structure of the network (edges) :df_structure: Dataframe containing the structure of the network (edges)
:df_variables: Dataframe containing the nodes cardinalities :df_variables: Dataframe containing the nodes cardinalities
:df_concatenated_samples: the concatenation and processing of all the trajectories present in the list df_samples list :df_concatenated_samples: the concatenation and processing of all the trajectories present
in the list df_samples list
:sorter: the columns header(excluding the time column) of the Dataframe concatenated_samples :sorter: the columns header(excluding the time column) of the Dataframe concatenated_samples
""" """
def __init__(self, file_path: str): def __init__(self, file_path: str):
"""
Parameters:
:file_path: the path to the file containing the data
"""
self.file_path = file_path self.file_path = file_path
self._df_variables = None self._df_variables = None
self._df_structure = None self._df_structure = None
@ -23,26 +28,30 @@ class AbstractImporter(ABC):
self._sorter = None self._sorter = None
super().__init__() super().__init__()
"""
@abstractmethod @abstractmethod
def import_trajectories(self, raw_data): def import_data(self):
pass
@abstractmethod
def import_structure(self, raw_data):
pass
""" """
Imports and prepares all data present needed for susequent computation.
Parameters:
:void
Returns:
:void
post[self]: the class members self._df_variables and self._df_structure HAVE to be properly constructed
as Pandas Dataframes with the following structure:
Header of self._df_structure = [From_Node | To_Node]
Header of self.df_variables = [Variable_Label | Variable_Cardinality]
"""
pass
@abstractmethod @abstractmethod
def import_data(self): def build_sorter(self, sample_frame: pd.DataFrame) -> typing.List:
""" """
Imports and prepares all data present needed for susequent computation. Initializes the self._sorter class member from a trajectory dataframe, exctracting the header of the frame
and keeping ONLY the variables symbolic labels, cutting out the time label in the header.
Parameters: Parameters:
void :sample_frame: The dataframe from which extract the header
Returns: Returns:
void :a list containing the processed header.
POSTCONDITION: the class members self._df_variables and self._df_structure HAVE to be properly constructed
as Pandas Dataframes
""" """
pass pass
@ -52,16 +61,15 @@ class AbstractImporter(ABC):
""" """
Computes the difference between each value present in th time column. Computes the difference between each value present in th time column.
Copies and shift by one position up all the values present in the remaining columns. Copies and shift by one position up all the values present in the remaining columns.
PREREQUISITE: the Dataframe in input has to follow the column structure of this header:
[Time|Variable values], so it is assumed TIME is ALWAYS the FIRST column.
Parameters: Parameters:
sample_frame: the traj to be processed :sample_frame: the traj to be processed
time_header_label: the label for the times :time_header_label: the label for the times
columns_header: the original header of sample_frame :columns_header: the original header of sample_frame
shifted_cols_header: a copy of columns_header with changed names of the contents :shifted_cols_header: a copy of columns_header with changed names of the contents
Returns: Returns:
sample_frame: the processed dataframe :sample_frame: the processed dataframe
pre: the Dataframe sample_frame has to follow the column structure of this header:
Header of sample_frame = [Time | Variable values]
""" """
#sample_frame[time_header_label] = sample_frame[time_header_label].diff().shift(-1) #sample_frame[time_header_label] = sample_frame[time_header_label].diff().shift(-1)
sample_frame.iloc[:, 0] = sample_frame.iloc[:, 0].diff().shift(-1) sample_frame.iloc[:, 0] = sample_frame.iloc[:, 0].diff().shift(-1)
@ -75,16 +83,18 @@ class AbstractImporter(ABC):
""" """
Calls the method compute_row_delta_sigle_samples_frame on every dataframe present in the list df_samples_list. Calls the method compute_row_delta_sigle_samples_frame on every dataframe present in the list df_samples_list.
Concatenates the result in the dataframe concatanated_samples Concatenates the result in the dataframe concatanated_samples
PREREQUISITE: the Dataframe in input has to follow the column structure of this header:
[Time|Variable values], so it is assumed TIME is ALWAYS the FIRST column.
The class member self._sorter HAS to be properly INITIALIZED
Parameters: Parameters:
time_header_label: the label of the time column time_header_label: the label of the time column
df_samples_list: the datframe's list to be processed and concatenated df_samples_list: the datframe's list to be processed and concatenated
Returns: Returns:
void void
pre: the Dataframe sample_frame has to follow the column structure of this header:
Header of sample_frame = [Time | Variable values]
The class member self._sorter HAS to be properly INITIALIZED (See class members definition doc)
""" """
if not self.sorter:
raise RuntimeError("The class member self._sorter has to be INITIALIZED!")
shifted_cols_header = [s + "S" for s in self._sorter] shifted_cols_header = [s + "S" for s in self._sorter]
compute_row_delta = self.compute_row_delta_sigle_samples_frame compute_row_delta = self.compute_row_delta_sigle_samples_frame
proc_samples_list = [compute_row_delta(sample, self._sorter, shifted_cols_header) proc_samples_list = [compute_row_delta(sample, self._sorter, shifted_cols_header)
@ -112,9 +122,9 @@ class AbstractImporter(ABC):
""" """
Removes all values in the dataframe concatenated_samples Removes all values in the dataframe concatenated_samples
Parameters: Parameters:
void :void
Returns: Returns:
void :void
""" """
self._concatenated_samples = self._concatenated_samples.iloc[0:0] self._concatenated_samples = self._concatenated_samples.iloc[0:0]
@ -131,5 +141,5 @@ class AbstractImporter(ABC):
return self._df_structure return self._df_structure
@property @property
def sorter(self): def sorter(self) -> typing.List:
return self._sorter return self._sorter

@ -1,7 +1,6 @@
import json import json
import typing import typing
import pandas as pd import pandas as pd
import abstract_importer as ai import abstract_importer as ai
@ -9,9 +8,9 @@ import abstract_importer as ai
class JsonImporter(ai.AbstractImporter): class JsonImporter(ai.AbstractImporter):
""" """
Implements the Interface AbstractImporter and adds all the necessary methods to process and prepare the data in json ext. Implements the abstracts methods of AbstractImporter and adds all the necessary methods to process and prepare the data in json ext.
with the following structure: with the following structure:
[] 0 [0]
|_ dyn.cims |_ dyn.cims
|_ dyn.str |_ dyn.str
|_ samples |_ samples
@ -27,28 +26,38 @@ class JsonImporter(ai.AbstractImporter):
def __init__(self, file_path: str, samples_label: str, structure_label: str, variables_label: str, time_key: str, def __init__(self, file_path: str, samples_label: str, structure_label: str, variables_label: str, time_key: str,
variables_key: str): variables_key: str):
"""
Parameters:
file_path: the path of the file that contains tha data to be imported
:samples_label: the reference key for the samples in the trajectories
:structure_label: the reference key for the structure of the network data
:variables_label: the reference key for the cardinalites of the nodes data
:time_key: the key used to identify the timestamps in each trajectory
:variables_key: the key used to identify the names of the variables in the net
"""
self.samples_label = samples_label self.samples_label = samples_label
self.structure_label = structure_label self.structure_label = structure_label
self.variables_label = variables_label self.variables_label = variables_label
self.time_key = time_key self.time_key = time_key
self.variables_key = variables_key self.variables_key = variables_key
self.df_samples_list = [] self.df_samples_list = None
super(JsonImporter, self).__init__(file_path) super(JsonImporter, self).__init__(file_path)
def import_data(self): def import_data(self):
""" """
Imports and prepares all data present needed for susequent computation. Imports and prepares all data present needed for subsequent processing.
Parameters: Parameters:
void :void
Returns: Returns:
void _void
""" """
raw_data = self.read_json_file() raw_data = self.read_json_file()
self.import_trajectories(raw_data) self.df_samples_list = self.import_trajectories(raw_data)
self._sorter = self.build_sorter(self.df_samples_list[0])
self.compute_row_delta_in_all_samples_frames(self.df_samples_list) self.compute_row_delta_in_all_samples_frames(self.df_samples_list)
self.clear_data_frame_list() self.clear_data_frame_list()
self.import_structure(raw_data) self._df_structure = self.import_structure(raw_data)
self.import_variables(raw_data, self._sorter) self._df_variables = self.import_variables(raw_data, self._sorter)
def import_trajectories(self, raw_data: typing.List): def import_trajectories(self, raw_data: typing.List):
""" """
@ -56,50 +65,51 @@ class JsonImporter(ai.AbstractImporter):
Parameters: Parameters:
:raw_data: List of Dicts :raw_data: List of Dicts
Returns: Returns:
void :List of dataframes containing all the trajectories
""" """
self.normalize_trajectories(raw_data, 0, self.samples_label) return self.normalize_trajectories(raw_data, 0, self.samples_label)
def import_structure(self, raw_data: typing.List): def import_structure(self, raw_data: typing.List) -> pd.DataFrame:
""" """
Imports in a dataframe the data in the list raw_data at the key structure_label Imports in a dataframe the data in the list raw_data at the key structure_label
Parameters: Parameters:
raw_data: the data :raw_data: the data
Returns: Returns:
void :Daframe containg the starting node a ending node of every arc of the network
""" """
self._df_structure = self.one_level_normalizing(raw_data, 0, self.structure_label) return self.one_level_normalizing(raw_data, 0, self.structure_label)
def import_variables(self, raw_data: typing.List, sorter: typing.List): def import_variables(self, raw_data: typing.List, sorter: typing.List) -> pd.DataFrame:
""" """
Imports the data in raw_data at the key variables_label. Imports the data in raw_data at the key variables_label.
Sorts the row of the dataframe df_variables using the list sorter. Sorts the row of the dataframe df_variables using the list sorter.
Parameters: Parameters:
raw_data: the data :raw_data: the data
sorter: the list used to sort the dataframe self.df_variables :sorter: the header of the dataset containing only variables symbolic labels
Returns: Returns:
void :Datframe containg the variables simbolic labels and their cardinalities
""" """
self._df_variables = self.one_level_normalizing(raw_data, 0, self.variables_label) return self.one_level_normalizing(raw_data, 0, self.variables_label)
#TODO Usando come Pre-requisito l'ordinamento del frame _df_variables uguale a quello presente in #TODO Usando come Pre-requisito l'ordinamento del frame _df_variables uguale a quello presente in
#TODO self _sorter questo codice risulta inutile #TODO self _sorter questo codice risulta inutile
self._df_variables[self.variables_key] = self._df_variables[self.variables_key].astype("category") """self._df_variables[self.variables_key] = self._df_variables[self.variables_key].astype("category")
self._df_variables[self.variables_key] = self._df_variables[self.variables_key].cat.set_categories(sorter) self._df_variables[self.variables_key] = self._df_variables[self.variables_key].cat.set_categories(sorter)
self._df_variables = self._df_variables.sort_values([self.variables_key]) self._df_variables = self._df_variables.sort_values([self.variables_key])
self._df_variables.reset_index(inplace=True) self._df_variables.reset_index(inplace=True)
self._df_variables.drop('index', axis=1, inplace=True) self._df_variables.drop('index', axis=1, inplace=True)
print("Var Frame", self._df_variables) #print("Var Frame", self._df_variables)
"""
def read_json_file(self) -> typing.List: def read_json_file(self) -> typing.List:
""" """
Reads the first json file in the path self.filePath Reads the JSON file in the path self.filePath
Parameters: Parameters:
void :void
Returns: Returns:
data: the contents of the json file :data: the contents of the json file
""" """
with open(self.file_path) as f: with open(self.file_path) as f:
@ -111,11 +121,11 @@ class JsonImporter(ai.AbstractImporter):
Extracts the one-level nested data in the list raw_data at the index indx at the key key Extracts the one-level nested data in the list raw_data at the index indx at the key key
Parameters: Parameters:
raw_data: List of Dicts :raw_data: List of Dicts
indx: The index of the array from which the data have to be extracted :indx: The index of the array from which the data have to be extracted
key: the key for the Dicts from which exctract data :key: the key for the Dicts from which exctract data
Returns: Returns:
a normalized dataframe :a normalized dataframe:
""" """
return pd.DataFrame(raw_data[indx][key]) return pd.DataFrame(raw_data[indx][key])
@ -123,32 +133,52 @@ class JsonImporter(ai.AbstractImporter):
def normalize_trajectories(self, raw_data: typing.List, indx: int, trajectories_key: str): def normalize_trajectories(self, raw_data: typing.List, indx: int, trajectories_key: str):
""" """
Extracts the traj in raw_data at the index index at the key trajectories key. Extracts the traj in raw_data at the index index at the key trajectories key.
Adds the extracted traj in the dataframe list self._df_samples_list.
Initializes the list self.sorter.
Parameters: Parameters:
raw_data: the data :raw_data: the data
indx: the index of the array from which extract data :indx: the index of the array from which extract data
trajectories_key: the key of the trajectories objects :trajectories_key: the key of the trajectories objects
Returns: Returns:
void :A list of daframes containg the trajectories
""" """
dataframe = pd.DataFrame dataframe = pd.DataFrame
smps = raw_data[indx][trajectories_key] smps = raw_data[indx][trajectories_key]
self.df_samples_list = [dataframe(sample) for sample in smps] df_samples_list = [dataframe(sample) for sample in smps]
columns_header = list(self.df_samples_list[0].columns.values) return df_samples_list
#print("COLUMNs HEADER", columns_header) #columns_header = list(self.df_samples_list[0].columns.values)
#columns_header.remove(self.time_key)
#self._sorter = columns_header
def build_sorter(self, sample_frame: pd.DataFrame) -> typing.List:
"""
Implements the abstract method build_sorter for this dataset
"""
columns_header = list(sample_frame.columns.values)
columns_header.remove(self.time_key) columns_header.remove(self.time_key)
self._sorter = columns_header return columns_header
def clear_data_frame_list(self): def clear_data_frame_list(self):
""" """
Removes all values present in the dataframes in the list df_samples_list Removes all values present in the dataframes in the list df_samples_list
Parameters:
:void
Returns:
:void
""" """
for indx in range(len(self.df_samples_list)): for indx in range(len(self.df_samples_list)):
self.df_samples_list[indx] = self.df_samples_list[indx].iloc[0:0] self.df_samples_list[indx] = self.df_samples_list[indx].iloc[0:0]
def import_sampled_cims(self, raw_data: typing.List, indx: int, cims_key: str) -> typing.Dict: def import_sampled_cims(self, raw_data: typing.List, indx: int, cims_key: str) -> typing.Dict:
"""
Imports the synthetic CIMS in the dataset in a dictionary, using variables labels
as keys for the set of CIMS of a particular node.
Parameters:
:raw_data: the data
:indx: the json array index
:cims_key: the key where the json object cims are placed
Returns:
:a dictionary containing the sampled CIMS for all the variables in the net
"""
cims_for_all_vars = {} cims_for_all_vars = {}
for var in raw_data[indx][cims_key]: for var in raw_data[indx][cims_key]:
sampled_cims_list = [] sampled_cims_list = []

@ -10,7 +10,7 @@ class SamplePath:
cardinalites. cardinalites.
Has the task of creating the objects that will contain the mentioned data. Has the task of creating the objects that will contain the mentioned data.
:importer: the Importer objects that will import ad process data
:trajectories: the Trajectory object that will contain all the concatenated trajectories :trajectories: the Trajectory object that will contain all the concatenated trajectories
:structure: the Structure Object that will contain all the structurral infos about the net :structure: the Structure Object that will contain all the structurral infos about the net
:total_variables_count: the number of variables in the net :total_variables_count: the number of variables in the net
@ -18,12 +18,14 @@ class SamplePath:
""" """
def __init__(self, importer: imp.AbstractImporter): def __init__(self, importer: imp.AbstractImporter):
""" """
Parameters:
:importer: the Importer objects that will import ad process data :importer: the Importer objects that will import ad process data
""" """
self.importer = importer self.importer = importer
self._trajectories = None self._trajectories = None
self._structure = None self._structure = None
self.total_variables_count = None self.total_variables_count = None
self.importer.import_data()
def build_trajectories(self): def build_trajectories(self):
""" """
@ -31,11 +33,11 @@ class SamplePath:
Clears all the unused dataframes in Importer Object Clears all the unused dataframes in Importer Object
Parameters: Parameters:
void :void
Returns: Returns:
void :void
""" """
self.importer.import_data() #self.importer.import_data()
self._trajectories = \ self._trajectories = \
tr.Trajectory(self.importer.build_list_of_samples_array(self.importer.concatenated_samples), tr.Trajectory(self.importer.build_list_of_samples_array(self.importer.concatenated_samples),
len(self.importer.sorter) + 1) len(self.importer.sorter) + 1)
@ -46,12 +48,13 @@ class SamplePath:
""" """
Builds the Structure object that aggregates all the infos about the net. Builds the Structure object that aggregates all the infos about the net.
Parameters: Parameters:
void :void
Returns: Returns:
void :void
""" """
if self.importer.sorter != self.importer.variables.iloc[:, 0].to_list(): if self.importer.sorter != self.importer.variables.iloc[:, 0].to_list():
raise RuntimeError("The Dataset columns order have to match the order of labels in the variables Frame!") raise RuntimeError("The Dataset columns order have to match the order of labels in the variables Frame!")
self.total_variables_count = len(self.importer.sorter) self.total_variables_count = len(self.importer.sorter)
#labels = self.importer.variables[self.importer.variables_key].to_list() #labels = self.importer.variables[self.importer.variables_key].to_list()
#print("SAMPLE PATH LABELS",labels) #print("SAMPLE PATH LABELS",labels)
@ -64,11 +67,11 @@ class SamplePath:
self.total_variables_count) self.total_variables_count)
@property @property
def trajectories(self): def trajectories(self) -> tr.Trajectory:
return self._trajectories return self._trajectories
@property @property
def structure(self): def structure(self) -> st.Structure:
return self._structure return self._structure
def total_variables_count(self): def total_variables_count(self):

@ -23,7 +23,7 @@ class TestJsonImporter(unittest.TestCase):
self.assertEqual(j1.time_key, 'Time') self.assertEqual(j1.time_key, 'Time')
self.assertEqual(j1.variables_key, 'Name') self.assertEqual(j1.variables_key, 'Name')
self.assertEqual(j1.file_path, self.read_files[0]) self.assertEqual(j1.file_path, self.read_files[0])
self.assertFalse(j1.df_samples_list) self.assertIsNone(j1.df_samples_list)
self.assertIsNone(j1.variables) self.assertIsNone(j1.variables)
self.assertIsNone(j1.structure) self.assertIsNone(j1.structure)
self.assertIsNone(j1.concatenated_samples) self.assertIsNone(j1.concatenated_samples)
@ -50,9 +50,9 @@ class TestJsonImporter(unittest.TestCase):
j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name') j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
raw_data = j1.read_json_file() raw_data = j1.read_json_file()
#print(raw_data) #print(raw_data)
j1.normalize_trajectories(raw_data, 0, j1.samples_label) df_samples_list = j1.normalize_trajectories(raw_data, 0, j1.samples_label)
self.assertEqual(len(j1.df_samples_list), len(raw_data[0][j1.samples_label])) self.assertEqual(len(df_samples_list), len(raw_data[0][j1.samples_label]))
self.assertEqual(list(j1.df_samples_list[0].columns.values)[1:], j1.sorter) #self.assertEqual(list(j1.df_samples_list[0].columns.values)[1:], j1.sorter)
def test_normalize_trajectories_wrong_indx(self): def test_normalize_trajectories_wrong_indx(self):
j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name') j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
@ -67,8 +67,9 @@ class TestJsonImporter(unittest.TestCase):
def test_compute_row_delta_single_samples_frame(self): def test_compute_row_delta_single_samples_frame(self):
j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name') j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
raw_data = j1.read_json_file() raw_data = j1.read_json_file()
j1.normalize_trajectories(raw_data, 0, j1.samples_label) j1.df_samples_list = j1.import_trajectories(raw_data)
sample_frame = j1.df_samples_list[0] sample_frame = j1.df_samples_list[0]
original_copy = sample_frame.copy()
columns_header = list(sample_frame.columns.values) columns_header = list(sample_frame.columns.values)
shifted_cols_header = [s + "S" for s in columns_header[1:]] shifted_cols_header = [s + "S" for s in columns_header[1:]]
new_sample_frame = j1.compute_row_delta_sigle_samples_frame(sample_frame, columns_header[1:], new_sample_frame = j1.compute_row_delta_sigle_samples_frame(sample_frame, columns_header[1:],
@ -76,11 +77,20 @@ class TestJsonImporter(unittest.TestCase):
self.assertEqual(len(list(sample_frame.columns.values)) + len(shifted_cols_header), self.assertEqual(len(list(sample_frame.columns.values)) + len(shifted_cols_header),
len(list(new_sample_frame.columns.values))) len(list(new_sample_frame.columns.values)))
self.assertEqual(sample_frame.shape[0] - 1, new_sample_frame.shape[0]) self.assertEqual(sample_frame.shape[0] - 1, new_sample_frame.shape[0])
for indx, row in new_sample_frame.iterrows():
self.assertAlmostEqual(row['Time'],
original_copy.iloc[indx + 1]['Time'] - original_copy.iloc[indx]['Time'])
for indx, row in new_sample_frame.iterrows():
np.array_equal(np.array(row[columns_header[1:]],dtype=int),
np.array(original_copy.iloc[indx][columns_header[1:]],dtype=int))
np.array_equal(np.array(row[shifted_cols_header], dtype=int),
np.array(original_copy.iloc[indx + 1][columns_header[1:]], dtype=int))
def test_compute_row_delta_in_all_frames(self): def test_compute_row_delta_in_all_frames(self):
j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name') j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
raw_data = j1.read_json_file() raw_data = j1.read_json_file()
j1.import_trajectories(raw_data) j1.df_samples_list = j1.import_trajectories(raw_data)
j1._sorter = j1.build_sorter(j1.df_samples_list[0])
j1.compute_row_delta_in_all_samples_frames(j1.df_samples_list) j1.compute_row_delta_in_all_samples_frames(j1.df_samples_list)
self.assertEqual(list(j1.df_samples_list[0].columns.values), self.assertEqual(list(j1.df_samples_list[0].columns.values),
list(j1.concatenated_samples.columns.values)[:len(list(j1.df_samples_list[0].columns.values))]) list(j1.concatenated_samples.columns.values)[:len(list(j1.df_samples_list[0].columns.values))])
@ -89,7 +99,8 @@ class TestJsonImporter(unittest.TestCase):
def test_clear_data_frame_list(self): def test_clear_data_frame_list(self):
j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name') j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
raw_data = j1.read_json_file() raw_data = j1.read_json_file()
j1.import_trajectories(raw_data) j1.df_samples_list = j1.import_trajectories(raw_data)
j1._sorter = j1.build_sorter(j1.df_samples_list[0])
j1.compute_row_delta_in_all_samples_frames(j1.df_samples_list) j1.compute_row_delta_in_all_samples_frames(j1.df_samples_list)
j1.clear_data_frame_list() j1.clear_data_frame_list()
for df in j1.df_samples_list: for df in j1.df_samples_list:
@ -121,23 +132,25 @@ class TestJsonImporter(unittest.TestCase):
def test_import_variables(self): def test_import_variables(self):
j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name') j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
sorter = ['X', 'Y', 'Z'] sorter = ['X', 'Y', 'Z']
raw_data = [{'variables':{"Name": ['Z', 'Y', 'X'], "value": [3, 3, 3]}}] raw_data = [{'variables':{"Name": ['X', 'Y', 'Z'], "value": [3, 3, 3]}}]
j1.import_variables(raw_data, sorter) df_var = j1.import_variables(raw_data, sorter)
self.assertEqual(list(j1.variables[j1.variables_key]), sorter) self.assertEqual(list(df_var[j1.variables_key]), sorter)
def test_import_structure(self): def test_import_structure(self):
j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name') j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
raw_data = [{"dyn.str":[{"From":"X","To":"Z"},{"From":"Y","To":"Z"},{"From":"Z","To":"Y"}]}] raw_data = [{"dyn.str":[{"From":"X","To":"Z"},{"From":"Y","To":"Z"},{"From":"Z","To":"Y"}]}]
j1.import_structure(raw_data) df_struct = j1.import_structure(raw_data)
#print(raw_data[0]['dyn.str'][0].items()) #print(raw_data[0]['dyn.str'][0].items())
self.assertIsInstance(j1.structure, pd.DataFrame) self.assertIsInstance(df_struct, pd.DataFrame)
def test_import_sampled_cims(self): def test_import_sampled_cims(self):
j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name') j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
raw_data = j1.read_json_file() raw_data = j1.read_json_file()
j1.df_samples_list = j1.import_trajectories(raw_data)
j1._sorter = j1.build_sorter(j1.df_samples_list[0])
cims = j1.import_sampled_cims(raw_data, 0, 'dyn.cims') cims = j1.import_sampled_cims(raw_data, 0, 'dyn.cims')
j1.import_variables(raw_data, ['X','Y','Z']) #TODO NON PUò dipendere direttamente da questo sorter #j1.import_variables(raw_data, j1.sorter)
self.assertEqual(list(cims.keys()), j1.variables['Name'].tolist()) self.assertEqual(list(cims.keys()), j1.sorter)
def test_import_data(self): def test_import_data(self):
j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name') j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')

@ -17,18 +17,22 @@ class TestSamplePath(unittest.TestCase):
cls.importer = ji.JsonImporter(cls.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name') cls.importer = ji.JsonImporter(cls.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
def test_init(self): def test_init(self):
s1 = sp.SamplePath(self.importer)
self.assertIsNone(s1.trajectories)
self.assertIsNone(s1.structure)
self.assertFalse(s1.importer.concatenated_samples.empty)
self.assertIsNone(s1.total_variables_count)
def test_build_trajectories(self):
s1 = sp.SamplePath(self.importer) s1 = sp.SamplePath(self.importer)
s1.build_trajectories() s1.build_trajectories()
self.assertIsNotNone(s1.trajectories)
self.assertIsInstance(s1.trajectories, tr.Trajectory) self.assertIsInstance(s1.trajectories, tr.Trajectory)
def test_build_structure(self):
s1 = sp.SamplePath(self.importer)
s1.build_structure() s1.build_structure()
self.assertIsNotNone(s1.structure)
self.assertIsInstance(s1.structure, st.Structure) self.assertIsInstance(s1.structure, st.Structure)
self.assertTrue(s1.importer.concatenated_samples.empty)
self.assertEqual(s1.total_variables_count, len(s1.importer.sorter)) self.assertEqual(s1.total_variables_count, len(s1.importer.sorter))
print(s1.structure)
print(s1.trajectories)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()