Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
145 lines
6.0 KiB
145 lines
6.0 KiB
from abc import ABC, abstractmethod
|
|
import pandas as pd
|
|
import typing
|
|
|
|
|
|
class AbstractImporter(ABC):
|
|
"""
|
|
Abstract class that exposes all the necessary methods to process the trajectories and the net structure.
|
|
|
|
:file_path: the file path
|
|
:_concatenated_samples: the concatenation of all the processed trajectories
|
|
:df_structure: Dataframe containing the structure of the network (edges)
|
|
:df_variables: Dataframe containing the nodes cardinalities
|
|
:df_concatenated_samples: the concatenation and processing of all the trajectories present
|
|
in the list df_samples list
|
|
:sorter: the columns header(excluding the time column) of the Dataframe concatenated_samples
|
|
"""
|
|
|
|
def __init__(self, file_path: str):
|
|
"""
|
|
Parameters:
|
|
:file_path: the path to the file containing the data
|
|
"""
|
|
self.file_path = file_path
|
|
self._df_variables = None
|
|
self._df_structure = None
|
|
self._concatenated_samples = None
|
|
self._sorter = None
|
|
super().__init__()
|
|
|
|
@abstractmethod
|
|
def import_data(self):
|
|
"""
|
|
Imports and prepares all data present needed for susequent computation.
|
|
Parameters:
|
|
:void
|
|
Returns:
|
|
:void
|
|
post[self]: the class members self._df_variables and self._df_structure HAVE to be properly constructed
|
|
as Pandas Dataframes with the following structure:
|
|
Header of self._df_structure = [From_Node | To_Node]
|
|
Header of self.df_variables = [Variable_Label | Variable_Cardinality]
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def build_sorter(self, sample_frame: pd.DataFrame) -> typing.List:
|
|
"""
|
|
Initializes the self._sorter class member from a trajectory dataframe, exctracting the header of the frame
|
|
and keeping ONLY the variables symbolic labels, cutting out the time label in the header.
|
|
Parameters:
|
|
:sample_frame: The dataframe from which extract the header
|
|
Returns:
|
|
:a list containing the processed header.
|
|
"""
|
|
pass
|
|
|
|
def compute_row_delta_sigle_samples_frame(self, sample_frame: pd.DataFrame,
|
|
columns_header: typing.List, shifted_cols_header: typing.List) \
|
|
-> pd.DataFrame:
|
|
"""
|
|
Computes the difference between each value present in th time column.
|
|
Copies and shift by one position up all the values present in the remaining columns.
|
|
Parameters:
|
|
:sample_frame: the traj to be processed
|
|
:time_header_label: the label for the times
|
|
:columns_header: the original header of sample_frame
|
|
:shifted_cols_header: a copy of columns_header with changed names of the contents
|
|
Returns:
|
|
:sample_frame: the processed dataframe
|
|
pre: the Dataframe sample_frame has to follow the column structure of this header:
|
|
Header of sample_frame = [Time | Variable values]
|
|
"""
|
|
#sample_frame[time_header_label] = sample_frame[time_header_label].diff().shift(-1)
|
|
sample_frame.iloc[:, 0] = sample_frame.iloc[:, 0].diff().shift(-1)
|
|
shifted_cols = sample_frame[columns_header].shift(-1).fillna(0).astype('int32')
|
|
shifted_cols.columns = shifted_cols_header
|
|
sample_frame = sample_frame.assign(**shifted_cols)
|
|
sample_frame.drop(sample_frame.tail(1).index, inplace=True)
|
|
return sample_frame
|
|
|
|
def compute_row_delta_in_all_samples_frames(self, df_samples_list: typing.List):
|
|
"""
|
|
Calls the method compute_row_delta_sigle_samples_frame on every dataframe present in the list df_samples_list.
|
|
Concatenates the result in the dataframe concatanated_samples
|
|
Parameters:
|
|
time_header_label: the label of the time column
|
|
df_samples_list: the datframe's list to be processed and concatenated
|
|
|
|
Returns:
|
|
void
|
|
pre: the Dataframe sample_frame has to follow the column structure of this header:
|
|
Header of sample_frame = [Time | Variable values]
|
|
The class member self._sorter HAS to be properly INITIALIZED (See class members definition doc)
|
|
"""
|
|
if not self.sorter:
|
|
raise RuntimeError("The class member self._sorter has to be INITIALIZED!")
|
|
shifted_cols_header = [s + "S" for s in self._sorter]
|
|
compute_row_delta = self.compute_row_delta_sigle_samples_frame
|
|
proc_samples_list = [compute_row_delta(sample, self._sorter, shifted_cols_header)
|
|
for sample in df_samples_list]
|
|
self._concatenated_samples = pd.concat(proc_samples_list)
|
|
complete_header = self._sorter[:]
|
|
complete_header.insert(0,'Time')
|
|
complete_header.extend(shifted_cols_header)
|
|
#print("Complete Header", complete_header)
|
|
self._concatenated_samples = self._concatenated_samples[complete_header]
|
|
#print("Concat Samples",self._concatenated_samples)
|
|
|
|
def build_list_of_samples_array(self, data_frame: pd.DataFrame) -> typing.List:
|
|
"""
|
|
Builds a List containing the columns of dataframe and converts them to a numpy array.
|
|
Parameters:
|
|
:data_frame: the dataframe from which the columns have to be extracted and converted
|
|
Returns:
|
|
:columns_list: the resulting list of numpy arrays
|
|
"""
|
|
columns_list = [data_frame[column].to_numpy() for column in data_frame]
|
|
return columns_list
|
|
|
|
def clear_concatenated_frame(self):
|
|
"""
|
|
Removes all values in the dataframe concatenated_samples
|
|
Parameters:
|
|
:void
|
|
Returns:
|
|
:void
|
|
"""
|
|
self._concatenated_samples = self._concatenated_samples.iloc[0:0]
|
|
|
|
@property
|
|
def concatenated_samples(self) -> pd.DataFrame:
|
|
return self._concatenated_samples
|
|
|
|
@property
|
|
def variables(self) -> pd.DataFrame:
|
|
return self._df_variables
|
|
|
|
@property
|
|
def structure(self) -> pd.DataFrame:
|
|
return self._df_structure
|
|
|
|
@property
|
|
def sorter(self) -> typing.List:
|
|
return self._sorter
|
|
|