1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/classes/set_of_cims.py

81 lines
3.3 KiB

import numpy as np
import conditional_intensity_matrix as cim
class SetOfCims:
"""
Rappresenta la struttura che aggrega tutte le CIM per la variabile di label node_id
:node_id: la label della varibile a cui fanno riferimento le CIM
:ordered_parent_set: il set dei parent della variabile node_id ordinata secondo la property indx
:value: il numero massimo di stati assumibili dalla variabile
:actual_cims: le CIM della varibile
"""
def __init__(self, node_id, parents_states_number, node_states_number, p_combs):
self.node_id = node_id
self.parents_states_number = parents_states_number
self.node_states_number = node_states_number
self.actual_cims = []
self.state_residence_times = None
self.transition_matrices = None
self.p_combs = p_combs
self.build_actual_cims_structure()
def build_actual_cims_structure(self):
if not self.parents_states_number:
self.state_residence_times = np.zeros((1, self.node_states_number), dtype=np.float)
self.transition_matrices = np.zeros((1,self.node_states_number, self.node_states_number), dtype=np.int)
else:
self.state_residence_times = \
np.zeros((np.prod(self.parents_states_number), self.node_states_number), dtype=np.float)
self.transition_matrices = np.zeros([np.prod(self.parents_states_number), self.node_states_number,
self.node_states_number], dtype=np.int)
def get_cims_number(self):
return len(self.actual_cims)
def indexes_converter(self, indexes): # Si aspetta array del tipo [2,2] dove
assert len(indexes) == len(self.parents_states_number)
vector_index = 0
if not indexes:
return vector_index
else:
for indx, value in enumerate(indexes):
vector_index = vector_index*self.parents_states_number[indx] + indexes[indx]
return vector_index
def build_cims(self, state_res_times, transition_matrices):
for state_res_time_vector, transition_matrix in zip(state_res_times, transition_matrices):
#print(state_res_time_vector, transition_matrix)
cim_to_add = cim.ConditionalIntensityMatrix(state_res_time_vector, transition_matrix)
cim_to_add.compute_cim_coefficients()
#print(cim_to_add)
self.actual_cims.append(cim_to_add)
self.actual_cims = np.array(self.actual_cims)
self.transition_matrices = None
self.state_residence_times = None
def get_cims(self):
return self.actual_cims
def get_cim(self, index):
flat_index = self.indexes_converter(index)
return self.actual_cims[flat_index]
def filter_cims_with_mask(self, mask_arr, comb):
if mask_arr.size <= 1:
return self.actual_cims
else:
tmp_parents_comb_from_ids = np.argwhere(np.all(self.p_combs[:, mask_arr] == comb, axis=1)).ravel()
#print("CIMS INDEXES TO USE!",tmp_parents_comb_from_ids)
return self.actual_cims[tmp_parents_comb_from_ids]
"""sofc = SetOfCims('Z', [3, 3], 3)
sofc.build_actual_cims_structure()
print(sofc.actual_cims)
print(sofc.actual_cims[0,0])
print(sofc.actual_cims[1,2])
#print(sofc.indexes_converter([]))"""