1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/classes/set_of_cims.py

36 lines
1.1 KiB

import numpy as np
import conditional_intensity_matrix as cim
class SetOfCims:
def __init__(self, node_id, ordered_parent_set, value_type):
self.node_id = node_id
self.ordered_parent_set = ordered_parent_set
self.value = value_type
self.actual_cims = None
def build_actual_cims_structure(self):
cims_number = self.value**len(self.ordered_parent_set)
self.actual_cims = np.empty(cims_number, dtype=cim.ConditionalIntensityMatrix)
for indx, matrix in enumerate(self.actual_cims):
self.actual_cims[indx] = cim.ConditionalIntensityMatrix(self.value)
def indexes_converter(self, dict_of_indexes): # Si aspetta oggetti del tipo {X:1, Y:1, Z:0}
literal_index = ""
for node in self.ordered_parent_set:
literal_index = literal_index + str(dict_of_indexes[node])
return int(literal_index, self.value)
sofc = SetOfCims('W', ['X','Y', 'Z'], 2)
#sofc.build_actual_cims_structure(sofc.ordered_parent_set, sofc.value)
sofc.build_actual_cims_structure()
print(sofc.actual_cims)
print(sofc.indexes_converter({'X':1, 'Y':1, 'Z':0}))