import numpy as np import conditional_intensity_matrix as cim class SetOfCims: """ Rappresenta la struttura che aggrega tutte le CIM per la variabile di label node_id :node_id: la label della varibile a cui fanno riferimento le CIM :ordered_parent_set: il set dei parent della variabile node_id ordinata secondo la property indx :value: il numero massimo di stati assumibili dalla variabile :actual_cims: le CIM della varibile """ def __init__(self, node_id, parents_states_number, node_states_number, p_combs): self.node_id = node_id self.parents_states_number = parents_states_number self.node_states_number = node_states_number self.actual_cims = [] self.state_residence_times = None self.transition_matrices = None self.p_combs = p_combs self.build_actual_cims_structure() def build_actual_cims_structure(self): if not self.parents_states_number: self.state_residence_times = np.zeros((1, self.node_states_number), dtype=np.float) self.transition_matrices = np.zeros((1,self.node_states_number, self.node_states_number), dtype=np.int) else: self.state_residence_times = \ np.zeros((np.prod(self.parents_states_number), self.node_states_number), dtype=np.float) self.transition_matrices = np.zeros([np.prod(self.parents_states_number), self.node_states_number, self.node_states_number], dtype=np.int) def get_cims_number(self): return len(self.actual_cims) def indexes_converter(self, indexes): # Si aspetta array del tipo [2,2] dove assert len(indexes) == len(self.parents_states_number) vector_index = 0 if not indexes: return vector_index else: for indx, value in enumerate(indexes): vector_index = vector_index*self.parents_states_number[indx] + indexes[indx] return vector_index def build_cims(self, state_res_times, transition_matrices): for state_res_time_vector, transition_matrix in zip(state_res_times, transition_matrices): #print(state_res_time_vector, transition_matrix) cim_to_add = cim.ConditionalIntensityMatrix(state_res_time_vector, transition_matrix) cim_to_add.compute_cim_coefficients() #print(cim_to_add) self.actual_cims.append(cim_to_add) self.actual_cims = np.array(self.actual_cims) self.transition_matrices = None self.state_residence_times = None def get_cims(self): return self.actual_cims def get_cim(self, index): flat_index = self.indexes_converter(index) return self.actual_cims[flat_index] def filter_cims_with_mask(self, mask_arr, comb): if mask_arr.size <= 1: return self.actual_cims else: tmp_parents_comb_from_ids = np.argwhere(np.all(self.p_combs[:, mask_arr] == comb, axis=1)).ravel() #print("CIMS INDEXES TO USE!",tmp_parents_comb_from_ids) return self.actual_cims[tmp_parents_comb_from_ids] """sofc = SetOfCims('Z', [3, 3], 3) sofc.build_actual_cims_structure() print(sofc.actual_cims) print(sofc.actual_cims[0,0]) print(sofc.actual_cims[1,2]) #print(sofc.indexes_converter([]))"""