Added synthetic network generation functions #85

Merged
meliurwen merged 12 commits from 84-feature-synthetic-network-generator into dev 2 years ago
  1. 4
      reCTBN/src/params.rs
  2. 248
      reCTBN/src/tools.rs
  3. 203
      reCTBN/tests/parameter_learning.rs
  4. 171
      reCTBN/tests/structure_learning.rs
  5. 167
      reCTBN/tests/tools.rs

@ -267,13 +267,11 @@ impl ParamsTrait for DiscreteStatesContinousTimeParams {
)));
}
let domain_size = domain_size as f64;
// Check if each row sum up to 0
if cim
.sum_axis(Axis(2))
.iter()
.any(|x| f64::abs(x.clone()) > f64::EPSILON * domain_size)
.any(|x| f64::abs(x.clone()) > f64::EPSILON.sqrt())
{
return Err(ParamsError::InvalidCIM(String::from(
"The sum of each row must be 0",

@ -1,7 +1,13 @@
//! Contains commonly used methods used across the crate.
use ndarray::prelude::*;
use std::ops::{DivAssign, MulAssign, Range};
use ndarray::{Array, Array1, Array2, Array3, Axis};
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
use crate::params::ParamsTrait;
use crate::process::NetworkProcess;
use crate::sampling::{ForwardSampler, Sampler};
use crate::{params, process};
@ -108,3 +114,243 @@ pub fn trajectory_generator<T: process::NetworkProcess>(
//Return a dataset object with the sampled trajectories.
Dataset::new(trajectories)
}
pub trait RandomGraphGenerator {
fn new(density: f64, seed: Option<u64>) -> Self;
fn generate_graph<T: NetworkProcess>(&mut self, net: &mut T);
}
/// Graph Generator using an uniform distribution.
///
/// A method to generate a random graph with edges uniformly distributed.
///
/// # Arguments
///
/// * `density` - is the density of the graph in terms of edges; domain: `0.0 ≤ density ≤ 1.0`.
/// * `rng` - is the random numbers generator.
///
/// # Example
///
/// ```rust
/// # use std::collections::BTreeSet;
/// # use ndarray::{arr1, arr2, arr3};
/// # use reCTBN::params;
/// # use reCTBN::params::Params::DiscreteStatesContinousTime;
/// # use reCTBN::tools::trajectory_generator;
/// # use reCTBN::process::NetworkProcess;
/// # use reCTBN::process::ctbn::CtbnNetwork;
/// use reCTBN::tools::UniformGraphGenerator;
/// use reCTBN::tools::RandomGraphGenerator;
/// # let mut net = CtbnNetwork::new();
/// # let nodes_cardinality = 8;
/// # let domain_cardinality = 4;
/// # for node in 0..nodes_cardinality {
/// # // Create the domain for a discrete node
/// # let mut domain = BTreeSet::new();
/// # for dvalue in 0..domain_cardinality {
/// # domain.insert(dvalue.to_string());
/// # }
/// # // Create the parameters for a discrete node using the domain
/// # let param = params::DiscreteStatesContinousTimeParams::new(
/// # node.to_string(),
/// # domain
/// # );
/// # //Create the node using the parameters
/// # let node = DiscreteStatesContinousTime(param);
/// # // Add the node to the network
/// # net.add_node(node).unwrap();
/// # }
///
/// // Initialize the Graph Generator using the one with an
/// // uniform distribution
/// let density = 1.0/3.0;
/// let seed = Some(7641630759785120);
/// let mut structure_generator = UniformGraphGenerator::new(
/// density,
/// seed
/// );
///
/// // Generate the graph directly on the network
/// structure_generator.generate_graph(&mut net);
/// # // Count all the edges generated in the network
/// # let mut edges = 0;
/// # for node in net.get_node_indices(){
/// # edges += net.get_children_set(node).len()
/// # }
/// # // Number of all the nodes in the network
/// # let nodes = net.get_node_indices().len() as f64;
/// # let expected_edges = (density * nodes * (nodes - 1.0)).round() as usize;
/// # // ±10% of tolerance
/// # let tolerance = ((expected_edges as f64)*0.10) as usize;
/// # // As the way `generate_graph()` is implemented we can only reasonably
/// # // expect the number of edges to be somewhere around the expected value.
/// # assert!((expected_edges - tolerance) <= edges && edges <= (expected_edges + tolerance));
/// ```
pub struct UniformGraphGenerator {
density: f64,
rng: ChaCha8Rng,
}
impl RandomGraphGenerator for UniformGraphGenerator {
fn new(density: f64, seed: Option<u64>) -> UniformGraphGenerator {
if density < 0.0 || density > 1.0 {
panic!(
"Density value must be between 1.0 and 0.0, got {}.",
density
);
}
let rng: ChaCha8Rng = match seed {
Some(seed) => SeedableRng::seed_from_u64(seed),
None => SeedableRng::from_entropy(),
};
UniformGraphGenerator { density, rng }
}
/// Generate an uniformly distributed graph.
fn generate_graph<T: NetworkProcess>(&mut self, net: &mut T) {
net.initialize_adj_matrix();
let last_node_idx = net.get_node_indices().len();
for parent in 0..last_node_idx {
for child in 0..last_node_idx {
if parent != child {
if self.rng.gen_bool(self.density) {
net.add_edge(parent, child);
}
}
}
}
}
}
pub trait RandomParametersGenerator {
fn new(interval: Range<f64>, seed: Option<u64>) -> Self;
fn generate_parameters<T: NetworkProcess>(&mut self, net: &mut T);
}
/// Parameters Generator using an uniform distribution.
///
/// A method to generate random parameters uniformly distributed.
///
/// # Arguments
///
/// * `interval` - is the interval of the random values oh the CIM's diagonal; domain: `≥ 0.0`.
/// * `rng` - is the random numbers generator.
///
/// # Example
///
/// ```rust
/// # use std::collections::BTreeSet;
/// # use ndarray::{arr1, arr2, arr3};
/// # use reCTBN::params;
/// # use reCTBN::params::ParamsTrait;
/// # use reCTBN::params::Params::DiscreteStatesContinousTime;
/// # use reCTBN::process::NetworkProcess;
/// # use reCTBN::process::ctbn::CtbnNetwork;
/// # use reCTBN::tools::trajectory_generator;
/// # use reCTBN::tools::RandomGraphGenerator;
/// # use reCTBN::tools::UniformGraphGenerator;
/// use reCTBN::tools::RandomParametersGenerator;
/// use reCTBN::tools::UniformParametersGenerator;
/// # let mut net = CtbnNetwork::new();
/// # let nodes_cardinality = 8;
/// # let domain_cardinality = 4;
/// # for node in 0..nodes_cardinality {
/// # // Create the domain for a discrete node
/// # let mut domain = BTreeSet::new();
/// # for dvalue in 0..domain_cardinality {
/// # domain.insert(dvalue.to_string());
/// # }
/// # // Create the parameters for a discrete node using the domain
/// # let param = params::DiscreteStatesContinousTimeParams::new(
/// # node.to_string(),
/// # domain
/// # );
/// # //Create the node using the parameters
/// # let node = DiscreteStatesContinousTime(param);
/// # // Add the node to the network
/// # net.add_node(node).unwrap();
/// # }
/// #
/// # // Initialize the Graph Generator using the one with an
/// # // uniform distribution
/// # let mut structure_generator = UniformGraphGenerator::new(
/// # 1.0/3.0,
/// # Some(7641630759785120)
/// # );
/// #
/// # // Generate the graph directly on the network
/// # structure_generator.generate_graph(&mut net);
///
/// // Initialize the parameters generator with uniform distributin
/// let mut cim_generator = UniformParametersGenerator::new(
/// 0.0..7.0,
/// Some(7641630759785120)
/// );
///
/// // Generate CIMs with uniformly distributed parameters.
/// cim_generator.generate_parameters(&mut net);
/// #
/// # for node in net.get_node_indices() {
/// # assert_eq!(
/// # Ok(()),
/// # net.get_node(node).validate_params()
/// # );
/// }
/// ```
pub struct UniformParametersGenerator {
interval: Range<f64>,
rng: ChaCha8Rng,
}
impl RandomParametersGenerator for UniformParametersGenerator {
fn new(interval: Range<f64>, seed: Option<u64>) -> UniformParametersGenerator {
if interval.start < 0.0 || interval.end < 0.0 {
panic!(
"Interval must be entirely less or equal than 0, got {}..{}.",
interval.start, interval.end
);
}
let rng: ChaCha8Rng = match seed {
Some(seed) => SeedableRng::seed_from_u64(seed),
None => SeedableRng::from_entropy(),
};
UniformParametersGenerator { interval, rng }
}
/// Generate CIMs with uniformly distributed parameters.
fn generate_parameters<T: NetworkProcess>(&mut self, net: &mut T) {
for node in net.get_node_indices() {
let parent_set_state_space_cardinality: usize = net
.get_parent_set(node)
.iter()
.map(|x| net.get_node(*x).get_reserved_space_as_parent())
.product();
match &mut net.get_node_mut(node) {
params::Params::DiscreteStatesContinousTime(param) => {
let node_domain_cardinality = param.get_reserved_space_as_parent();
let mut cim = Array3::<f64>::from_shape_fn(
(
parent_set_state_space_cardinality,
node_domain_cardinality,
node_domain_cardinality,
),
|_| self.rng.gen(),
);
cim.axis_iter_mut(Axis(0)).for_each(|mut x| {
x.diag_mut().fill(0.0);
x.div_assign(&x.sum_axis(Axis(1)).insert_axis(Axis(1)));
let diag = Array1::<f64>::from_shape_fn(node_domain_cardinality, |_| {
self.rng.gen_range(self.interval.clone())
});
x.mul_assign(&diag.clone().insert_axis(Axis(1)));
// Recomputing the diagonal in order to reduce the issues caused by the
// loss of precision when validating the parameters.
let diag_sum = -x.sum_axis(Axis(1));
x.diag_mut().assign(&diag_sum)
});
param.set_cim_unchecked(cim);
}
}
}
}
}

@ -6,6 +6,7 @@ use reCTBN::process::ctbn::*;
use reCTBN::process::NetworkProcess;
use reCTBN::parameter_learning::*;
use reCTBN::params;
use reCTBN::params::Params::DiscreteStatesContinousTime;
use reCTBN::tools::*;
use utils::*;
@ -66,18 +67,78 @@ fn learn_binary_cim<T: ParameterLearning>(pl: T) {
));
}
fn generate_nodes(
net: &mut CtbnNetwork,
nodes_cardinality: usize,
nodes_domain_cardinality: usize
) {
for node_label in 0..nodes_cardinality {
net.add_node(
generate_discrete_time_continous_node(
node_label.to_string(),
nodes_domain_cardinality,
)
).unwrap();
}
}
fn learn_binary_cim_gen<T: ParameterLearning>(pl: T) {
let mut net = CtbnNetwork::new();
generate_nodes(&mut net, 2, 2);
net.add_edge(0, 1);
let mut cim_generator: UniformParametersGenerator = RandomParametersGenerator::new(
1.0..6.0,
Some(6813071588535822)
);
cim_generator.generate_parameters(&mut net);
let p_gen = match net.get_node(1) {
DiscreteStatesContinousTime(p_gen) => p_gen,
};
let data = trajectory_generator(&net, 100, 100.0, Some(6347747169756259));
let p_tj = match pl.fit(&net, &data, 1, None) {
DiscreteStatesContinousTime(p_tj) => p_tj,
};
assert_eq!(
p_tj.get_cim().as_ref().unwrap().shape(),
p_gen.get_cim().as_ref().unwrap().shape()
);
assert!(
p_tj.get_cim().as_ref().unwrap().abs_diff_eq(
&p_gen.get_cim().as_ref().unwrap(),
0.1
)
);
}
#[test]
fn learn_binary_cim_MLE() {
let mle = MLE {};
learn_binary_cim(mle);
}
#[test]
fn learn_binary_cim_MLE_gen() {
let mle = MLE {};
learn_binary_cim_gen(mle);
}
#[test]
fn learn_binary_cim_BA() {
let ba = BayesianApproach { alpha: 1, tau: 1.0 };
learn_binary_cim(ba);
}
#[test]
fn learn_binary_cim_BA_gen() {
let ba = BayesianApproach { alpha: 1, tau: 1.0 };
learn_binary_cim_gen(ba);
}
fn learn_ternary_cim<T: ParameterLearning>(pl: T) {
let mut net = CtbnNetwork::new();
let n1 = net
@ -155,18 +216,63 @@ fn learn_ternary_cim<T: ParameterLearning>(pl: T) {
));
}
fn learn_ternary_cim_gen<T: ParameterLearning>(pl: T) {
let mut net = CtbnNetwork::new();
generate_nodes(&mut net, 2, 3);
net.add_edge(0, 1);
let mut cim_generator: UniformParametersGenerator = RandomParametersGenerator::new(
4.0..6.0,
Some(6813071588535822)
);
cim_generator.generate_parameters(&mut net);
let p_gen = match net.get_node(1) {
DiscreteStatesContinousTime(p_gen) => p_gen,
};
let data = trajectory_generator(&net, 100, 200.0, Some(6347747169756259));
let p_tj = match pl.fit(&net, &data, 1, None) {
DiscreteStatesContinousTime(p_tj) => p_tj,
};
assert_eq!(
p_tj.get_cim().as_ref().unwrap().shape(),
p_gen.get_cim().as_ref().unwrap().shape()
);
assert!(
p_tj.get_cim().as_ref().unwrap().abs_diff_eq(
&p_gen.get_cim().as_ref().unwrap(),
0.1
)
);
}
#[test]
fn learn_ternary_cim_MLE() {
let mle = MLE {};
learn_ternary_cim(mle);
}
#[test]
fn learn_ternary_cim_MLE_gen() {
let mle = MLE {};
learn_ternary_cim_gen(mle);
}
#[test]
fn learn_ternary_cim_BA() {
let ba = BayesianApproach { alpha: 1, tau: 1.0 };
learn_ternary_cim(ba);
}
#[test]
fn learn_ternary_cim_BA_gen() {
let ba = BayesianApproach { alpha: 1, tau: 1.0 };
learn_ternary_cim_gen(ba);
}
fn learn_ternary_cim_no_parents<T: ParameterLearning>(pl: T) {
let mut net = CtbnNetwork::new();
let n1 = net
@ -234,18 +340,63 @@ fn learn_ternary_cim_no_parents<T: ParameterLearning>(pl: T) {
));
}
fn learn_ternary_cim_no_parents_gen<T: ParameterLearning>(pl: T) {
let mut net = CtbnNetwork::new();
generate_nodes(&mut net, 2, 3);
net.add_edge(0, 1);
let mut cim_generator: UniformParametersGenerator = RandomParametersGenerator::new(
1.0..6.0,
Some(6813071588535822)
);
cim_generator.generate_parameters(&mut net);
let p_gen = match net.get_node(0) {
DiscreteStatesContinousTime(p_gen) => p_gen,
};
let data = trajectory_generator(&net, 100, 200.0, Some(6347747169756259));
let p_tj = match pl.fit(&net, &data, 0, None) {
DiscreteStatesContinousTime(p_tj) => p_tj,
};
assert_eq!(
p_tj.get_cim().as_ref().unwrap().shape(),
p_gen.get_cim().as_ref().unwrap().shape()
);
assert!(
p_tj.get_cim().as_ref().unwrap().abs_diff_eq(
&p_gen.get_cim().as_ref().unwrap(),
0.1
)
);
}
#[test]
fn learn_ternary_cim_no_parents_MLE() {
let mle = MLE {};
learn_ternary_cim_no_parents(mle);
}
#[test]
fn learn_ternary_cim_no_parents_MLE_gen() {
let mle = MLE {};
learn_ternary_cim_no_parents_gen(mle);
}
#[test]
fn learn_ternary_cim_no_parents_BA() {
let ba = BayesianApproach { alpha: 1, tau: 1.0 };
learn_ternary_cim_no_parents(ba);
}
#[test]
fn learn_ternary_cim_no_parents_BA_gen() {
let ba = BayesianApproach { alpha: 1, tau: 1.0 };
learn_ternary_cim_no_parents_gen(ba);
}
fn learn_mixed_discrete_cim<T: ParameterLearning>(pl: T) {
let mut net = CtbnNetwork::new();
let n1 = net
@ -432,14 +583,66 @@ fn learn_mixed_discrete_cim<T: ParameterLearning>(pl: T) {
));
}
fn learn_mixed_discrete_cim_gen<T: ParameterLearning>(pl: T) {
let mut net = CtbnNetwork::new();
generate_nodes(&mut net, 2, 3);
net.add_node(
generate_discrete_time_continous_node(
String::from("3"),
4
)
).unwrap();
net.add_edge(0, 1);
net.add_edge(0, 2);
net.add_edge(1, 2);
let mut cim_generator: UniformParametersGenerator = RandomParametersGenerator::new(
1.0..8.0,
Some(6813071588535822)
);
cim_generator.generate_parameters(&mut net);
let p_gen = match net.get_node(2) {
DiscreteStatesContinousTime(p_gen) => p_gen,
};
let data = trajectory_generator(&net, 300, 300.0, Some(6347747169756259));
let p_tj = match pl.fit(&net, &data, 2, None) {
DiscreteStatesContinousTime(p_tj) => p_tj,
};
assert_eq!(
p_tj.get_cim().as_ref().unwrap().shape(),
p_gen.get_cim().as_ref().unwrap().shape()
);
assert!(
p_tj.get_cim().as_ref().unwrap().abs_diff_eq(
&p_gen.get_cim().as_ref().unwrap(),
0.2
)
);
}
#[test]
fn learn_mixed_discrete_cim_MLE() {
let mle = MLE {};
learn_mixed_discrete_cim(mle);
}
#[test]
fn learn_mixed_discrete_cim_MLE_gen() {
let mle = MLE {};
learn_mixed_discrete_cim_gen(mle);
}
#[test]
fn learn_mixed_discrete_cim_BA() {
let ba = BayesianApproach { alpha: 1, tau: 1.0 };
learn_mixed_discrete_cim(ba);
}
#[test]
fn learn_mixed_discrete_cim_BA_gen() {
let ba = BayesianApproach { alpha: 1, tau: 1.0 };
learn_mixed_discrete_cim_gen(ba);
}

@ -117,6 +117,50 @@ fn check_compatibility_between_dataset_and_network<T: StructureLearningAlgorithm
let _net = sl.fit_transform(net, &data);
}
fn generate_nodes(
net: &mut CtbnNetwork,
nodes_cardinality: usize,
nodes_domain_cardinality: usize
) {
for node_label in 0..nodes_cardinality {
net.add_node(
generate_discrete_time_continous_node(
node_label.to_string(),
nodes_domain_cardinality,
)
).unwrap();
}
}
fn check_compatibility_between_dataset_and_network_gen<T: StructureLearningAlgorithm>(sl: T) {
let mut net = CtbnNetwork::new();
generate_nodes(&mut net, 2, 3);
net.add_node(
generate_discrete_time_continous_node(
String::from("3"),
4
)
).unwrap();
net.add_edge(0, 1);
let mut cim_generator: UniformParametersGenerator = RandomParametersGenerator::new(
0.0..7.0,
Some(6813071588535822)
);
cim_generator.generate_parameters(&mut net);
let data = trajectory_generator(&net, 100, 30.0, Some(6347747169756259));
let mut net = CtbnNetwork::new();
let _n1 = net
.add_node(
generate_discrete_time_continous_node(String::from("0"),
3)
).unwrap();
let _net = sl.fit_transform(net, &data);
}
#[test]
#[should_panic]
pub fn check_compatibility_between_dataset_and_network_hill_climbing() {
@ -125,6 +169,14 @@ pub fn check_compatibility_between_dataset_and_network_hill_climbing() {
check_compatibility_between_dataset_and_network(hl);
}
#[test]
#[should_panic]
pub fn check_compatibility_between_dataset_and_network_hill_climbing_gen() {
let ll = LogLikelihood::new(1, 1.0);
let hl = HillClimbing::new(ll, None);
check_compatibility_between_dataset_and_network_gen(hl);
}
fn learn_ternary_net_2_nodes<T: StructureLearningAlgorithm>(sl: T) {
let mut net = CtbnNetwork::new();
let n1 = net
@ -182,6 +234,25 @@ fn learn_ternary_net_2_nodes<T: StructureLearningAlgorithm>(sl: T) {
assert_eq!(BTreeSet::new(), net.get_parent_set(n1));
}
fn learn_ternary_net_2_nodes_gen<T: StructureLearningAlgorithm>(sl: T) {
let mut net = CtbnNetwork::new();
generate_nodes(&mut net, 2, 3);
net.add_edge(0, 1);
let mut cim_generator: UniformParametersGenerator = RandomParametersGenerator::new(
0.0..7.0,
Some(6813071588535822)
);
cim_generator.generate_parameters(&mut net);
let data = trajectory_generator(&net, 100, 20.0, Some(6347747169756259));
let net = sl.fit_transform(net, &data);
assert_eq!(BTreeSet::from_iter(vec![0]), net.get_parent_set(1));
assert_eq!(BTreeSet::new(), net.get_parent_set(0));
}
#[test]
pub fn learn_ternary_net_2_nodes_hill_climbing_ll() {
let ll = LogLikelihood::new(1, 1.0);
@ -189,6 +260,13 @@ pub fn learn_ternary_net_2_nodes_hill_climbing_ll() {
learn_ternary_net_2_nodes(hl);
}
#[test]
pub fn learn_ternary_net_2_nodes_hill_climbing_ll_gen() {
let ll = LogLikelihood::new(1, 1.0);
let hl = HillClimbing::new(ll, None);
learn_ternary_net_2_nodes_gen(hl);
}
#[test]
pub fn learn_ternary_net_2_nodes_hill_climbing_bic() {
let bic = BIC::new(1, 1.0);
@ -196,6 +274,13 @@ pub fn learn_ternary_net_2_nodes_hill_climbing_bic() {
learn_ternary_net_2_nodes(hl);
}
#[test]
pub fn learn_ternary_net_2_nodes_hill_climbing_bic_gen() {
let bic = BIC::new(1, 1.0);
let hl = HillClimbing::new(bic, None);
learn_ternary_net_2_nodes_gen(hl);
}
fn get_mixed_discrete_net_3_nodes_with_data() -> (CtbnNetwork, Dataset) {
let mut net = CtbnNetwork::new();
let n1 = net
@ -320,6 +405,30 @@ fn get_mixed_discrete_net_3_nodes_with_data() -> (CtbnNetwork, Dataset) {
return (net, data);
}
fn get_mixed_discrete_net_3_nodes_with_data_gen() -> (CtbnNetwork, Dataset) {
let mut net = CtbnNetwork::new();
generate_nodes(&mut net, 2, 3);
net.add_node(
generate_discrete_time_continous_node(
String::from("3"),
4
)
).unwrap();
net.add_edge(0, 1);
net.add_edge(0, 2);
net.add_edge(1, 2);
let mut cim_generator: UniformParametersGenerator = RandomParametersGenerator::new(
0.0..7.0,
Some(6813071588535822)
);
cim_generator.generate_parameters(&mut net);
let data = trajectory_generator(&net, 300, 30.0, Some(6347747169756259));
return (net, data);
}
fn learn_mixed_discrete_net_3_nodes<T: StructureLearningAlgorithm>(sl: T) {
let (net, data) = get_mixed_discrete_net_3_nodes_with_data();
let net = sl.fit_transform(net, &data);
@ -328,6 +437,14 @@ fn learn_mixed_discrete_net_3_nodes<T: StructureLearningAlgorithm>(sl: T) {
assert_eq!(BTreeSet::from_iter(vec![0, 1]), net.get_parent_set(2));
}
fn learn_mixed_discrete_net_3_nodes_gen<T: StructureLearningAlgorithm>(sl: T) {
let (net, data) = get_mixed_discrete_net_3_nodes_with_data_gen();
let net = sl.fit_transform(net, &data);
assert_eq!(BTreeSet::new(), net.get_parent_set(0));
assert_eq!(BTreeSet::from_iter(vec![0]), net.get_parent_set(1));
assert_eq!(BTreeSet::from_iter(vec![0, 1]), net.get_parent_set(2));
}
#[test]
pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_ll() {
let ll = LogLikelihood::new(1, 1.0);
@ -335,6 +452,13 @@ pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_ll() {
learn_mixed_discrete_net_3_nodes(hl);
}
#[test]
pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_ll_gen() {
let ll = LogLikelihood::new(1, 1.0);
let hl = HillClimbing::new(ll, None);
learn_mixed_discrete_net_3_nodes_gen(hl);
}
#[test]
pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_bic() {
let bic = BIC::new(1, 1.0);
@ -342,6 +466,13 @@ pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_bic() {
learn_mixed_discrete_net_3_nodes(hl);
}
#[test]
pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_bic_gen() {
let bic = BIC::new(1, 1.0);
let hl = HillClimbing::new(bic, None);
learn_mixed_discrete_net_3_nodes_gen(hl);
}
fn learn_mixed_discrete_net_3_nodes_1_parent_constraint<T: StructureLearningAlgorithm>(sl: T) {
let (net, data) = get_mixed_discrete_net_3_nodes_with_data();
let net = sl.fit_transform(net, &data);
@ -350,6 +481,14 @@ fn learn_mixed_discrete_net_3_nodes_1_parent_constraint<T: StructureLearningAlgo
assert_eq!(BTreeSet::from_iter(vec![0]), net.get_parent_set(2));
}
fn learn_mixed_discrete_net_3_nodes_1_parent_constraint_gen<T: StructureLearningAlgorithm>(sl: T) {
let (net, data) = get_mixed_discrete_net_3_nodes_with_data_gen();
let net = sl.fit_transform(net, &data);
assert_eq!(BTreeSet::new(), net.get_parent_set(0));
assert_eq!(BTreeSet::from_iter(vec![0]), net.get_parent_set(1));
assert_eq!(BTreeSet::from_iter(vec![0]), net.get_parent_set(2));
}
#[test]
pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_ll_1_parent_constraint() {
let ll = LogLikelihood::new(1, 1.0);
@ -357,6 +496,13 @@ pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_ll_1_parent_constraint() {
learn_mixed_discrete_net_3_nodes_1_parent_constraint(hl);
}
#[test]
pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_ll_1_parent_constraint_gen() {
let ll = LogLikelihood::new(1, 1.0);
let hl = HillClimbing::new(ll, Some(1));
learn_mixed_discrete_net_3_nodes_1_parent_constraint_gen(hl);
}
#[test]
pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_bic_1_parent_constraint() {
let bic = BIC::new(1, 1.0);
@ -364,6 +510,13 @@ pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_bic_1_parent_constraint()
learn_mixed_discrete_net_3_nodes_1_parent_constraint(hl);
}
#[test]
pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_bic_1_parent_constraint_gen() {
let bic = BIC::new(1, 1.0);
let hl = HillClimbing::new(bic, Some(1));
learn_mixed_discrete_net_3_nodes_1_parent_constraint_gen(hl);
}
#[test]
pub fn chi_square_compare_matrices() {
let i: usize = 1;
@ -511,6 +664,15 @@ pub fn learn_ternary_net_2_nodes_ctpc() {
learn_ternary_net_2_nodes(ctpc);
}
#[test]
pub fn learn_ternary_net_2_nodes_ctpc_gen() {
let f = F::new(1e-6);
let chi_sq = ChiSquare::new(1e-4);
let parameter_learning = BayesianApproach { alpha: 1, tau:1.0 };
let ctpc = CTPC::new(parameter_learning, f, chi_sq);
learn_ternary_net_2_nodes_gen(ctpc);
}
#[test]
fn learn_mixed_discrete_net_3_nodes_ctpc() {
let f = F::new(1e-6);
@ -519,3 +681,12 @@ fn learn_mixed_discrete_net_3_nodes_ctpc() {
let ctpc = CTPC::new(parameter_learning, f, chi_sq);
learn_mixed_discrete_net_3_nodes(ctpc);
}
#[test]
fn learn_mixed_discrete_net_3_nodes_ctpc_gen() {
let f = F::new(1e-6);
let chi_sq = ChiSquare::new(1e-4);
let parameter_learning = BayesianApproach { alpha: 1, tau:1.0 };
let ctpc = CTPC::new(parameter_learning, f, chi_sq);
learn_mixed_discrete_net_3_nodes_gen(ctpc);
}

@ -1,9 +1,15 @@
use std::ops::Range;
use ndarray::{arr1, arr2, arr3};
use reCTBN::params::ParamsTrait;
use reCTBN::process::ctbn::*;
use reCTBN::process::ctmp::*;
use reCTBN::process::NetworkProcess;
use reCTBN::params;
use reCTBN::tools::*;
use utils::*;
#[macro_use]
extern crate approx;
@ -82,3 +88,164 @@ fn dataset_wrong_shape() {
let t2 = Trajectory::new(time, events);
Dataset::new(vec![t1, t2]);
}
#[test]
#[should_panic]
fn uniform_graph_generator_wrong_density_1() {
let density = 2.1;
let _structure_generator: UniformGraphGenerator = RandomGraphGenerator::new(
density,
None
);
}
#[test]
#[should_panic]
fn uniform_graph_generator_wrong_density_2() {
let density = -0.5;
let _structure_generator: UniformGraphGenerator = RandomGraphGenerator::new(
density,
None
);
}
#[test]
fn uniform_graph_generator_right_densities() {
for density in [1.0, 0.75, 0.5, 0.25, 0.0] {
let _structure_generator: UniformGraphGenerator = RandomGraphGenerator::new(
density,
None
);
}
}
#[test]
fn uniform_graph_generator_generate_graph_ctbn() {
let mut net = CtbnNetwork::new();
let nodes_cardinality = 0..=100;
let nodes_domain_cardinality = 2;
for node_label in nodes_cardinality {
net.add_node(
utils::generate_discrete_time_continous_node(
node_label.to_string(),
nodes_domain_cardinality,
)
).unwrap();
}
let density = 1.0/3.0;
let mut structure_generator: UniformGraphGenerator = RandomGraphGenerator::new(
density,
Some(7641630759785120)
);
structure_generator.generate_graph(&mut net);
let mut edges = 0;
for node in net.get_node_indices(){
edges += net.get_children_set(node).len()
}
let nodes = net.get_node_indices().len() as f64;
let expected_edges = (density * nodes * (nodes - 1.0)).round() as usize;
let tolerance = ((expected_edges as f64)*0.05) as usize; // ±5% of tolerance
// As the way `generate_graph()` is implemented we can only reasonably
// expect the number of edges to be somewhere around the expected value.
assert!((expected_edges - tolerance) <= edges && edges <= (expected_edges + tolerance));
}
#[test]
#[should_panic]
fn uniform_graph_generator_generate_graph_ctmp() {
let mut net = CtmpProcess::new();
let node_label = String::from("0");
let node_domain_cardinality = 4;
net.add_node(
generate_discrete_time_continous_node(
node_label,
node_domain_cardinality
)
).unwrap();
let density = 1.0/3.0;
let mut structure_generator: UniformGraphGenerator = RandomGraphGenerator::new(
density,
Some(7641630759785120)
);
structure_generator.generate_graph(&mut net);
}
#[test]
#[should_panic]
fn uniform_parameters_generator_wrong_density_1() {
let interval: Range<f64> = -2.0..-5.0;
let _cim_generator: UniformParametersGenerator = RandomParametersGenerator::new(
interval,
None
);
}
#[test]
#[should_panic]
fn uniform_parameters_generator_wrong_density_2() {
let interval: Range<f64> = -1.0..0.0;
let _cim_generator: UniformParametersGenerator = RandomParametersGenerator::new(
interval,
None
);
}
#[test]
fn uniform_parameters_generator_right_densities_ctbn() {
let mut net = CtbnNetwork::new();
let nodes_cardinality = 0..=3;
let nodes_domain_cardinality = 9;
for node_label in nodes_cardinality {
net.add_node(
generate_discrete_time_continous_node(
node_label.to_string(),
nodes_domain_cardinality,
)
).unwrap();
}
let density = 1.0/3.0;
let seed = Some(7641630759785120);
let interval = 0.0..7.0;
let mut structure_generator: UniformGraphGenerator = RandomGraphGenerator::new(
density,
seed
);
structure_generator.generate_graph(&mut net);
let mut cim_generator: UniformParametersGenerator = RandomParametersGenerator::new(
interval,
seed
);
cim_generator.generate_parameters(&mut net);
for node in net.get_node_indices() {
assert_eq!(
Ok(()),
net.get_node(node).validate_params()
);
}
}
#[test]
fn uniform_parameters_generator_right_densities_ctmp() {
let mut net = CtmpProcess::new();
let node_label = String::from("0");
let node_domain_cardinality = 4;
net.add_node(
generate_discrete_time_continous_node(
node_label,
node_domain_cardinality
)
).unwrap();
let seed = Some(7641630759785120);
let interval = 0.0..7.0;
let mut cim_generator: UniformParametersGenerator = RandomParametersGenerator::new(
interval,
seed
);
cim_generator.generate_parameters(&mut net);
for node in net.get_node_indices() {
assert_eq!(
Ok(()),
net.get_node(node).validate_params()
);
}
}

Loading…
Cancel
Save