9 score based algorithm #42

Merged
AlessandroBregoli merged 14 commits from 9-score-based-algorithm into dev 3 years ago
  1. 1
      Cargo.toml
  2. 1
      src/lib.rs
  3. 12
      src/parameter_learning.rs
  4. 10
      src/structure_learning.rs
  5. 83
      src/structure_learning/score_based_algorithm.rs
  6. 136
      src/structure_learning/score_function.rs
  7. 120
      src/tools.rs
  8. 260
      tests/structure_learning.rs
  9. 28
      tests/tools.rs

@ -12,6 +12,7 @@ thiserror = "*"
rand = "*" rand = "*"
bimap = "*" bimap = "*"
enum_dispatch = "*" enum_dispatch = "*"
statrs = "*"
rand_chacha = "*" rand_chacha = "*"
[dev-dependencies] [dev-dependencies]

@ -8,4 +8,5 @@ pub mod network;
pub mod ctbn; pub mod ctbn;
pub mod tools; pub mod tools;
pub mod parameter_learning; pub mod parameter_learning;
pub mod structure_learning;

@ -57,12 +57,12 @@ pub fn sufficient_statistics<T:network::Network>(
let mut T: Array2<f64> = Array::zeros((parentset_domain.iter().product(), node_domain)); let mut T: Array2<f64> = Array::zeros((parentset_domain.iter().product(), node_domain));
//Compute the sufficient statistics //Compute the sufficient statistics
for trj in dataset.trajectories.iter() { for trj in dataset.get_trajectories().iter() {
for idx in 0..(trj.time.len() - 1) { for idx in 0..(trj.get_time().len() - 1) {
let t1 = trj.time[idx]; let t1 = trj.get_time()[idx];
let t2 = trj.time[idx + 1]; let t2 = trj.get_time()[idx + 1];
let ev1 = trj.events.row(idx); let ev1 = trj.get_events().row(idx);
let ev2 = trj.events.row(idx + 1); let ev2 = trj.get_events().row(idx + 1);
let idx1 = vector_to_idx.dot(&ev1); let idx1 = vector_to_idx.dot(&ev1);
T[[idx1, ev1[node]]] += t2 - t1; T[[idx1, ev1[node]]] += t2 - t1;

@ -0,0 +1,10 @@
pub mod score_function;
pub mod score_based_algorithm;
use crate::network;
use crate::tools;
pub trait StructureLearningAlgorithm {
fn fit_transform<T, >(&self, net: T, dataset: &tools::Dataset) -> T
where
T: network::Network;
}

@ -0,0 +1,83 @@
use crate::network;
use crate::structure_learning::score_function::ScoreFunction;
use crate::structure_learning::StructureLearningAlgorithm;
use crate::tools;
use std::collections::BTreeSet;
pub struct HillClimbing<S: ScoreFunction> {
score_function: S,
max_parent_set: Option<usize>,
}
impl<S: ScoreFunction> HillClimbing<S> {
pub fn init(score_function: S, max_parent_set: Option<usize>) -> HillClimbing<S> {
HillClimbing {
score_function,
max_parent_set,
}
}
}
impl<S: ScoreFunction> StructureLearningAlgorithm for HillClimbing<S> {
fn fit_transform<T>(&self, net: T, dataset: &tools::Dataset) -> T
where
T: network::Network,
{
//Check the coherence between dataset and network
if net.get_number_of_nodes() != dataset.get_trajectories()[0].get_events().shape()[1] {
panic!("Dataset and Network must have the same number of variables.")
}
//Make the network mutable.
let mut net = net;
//Check if the max_parent_set constraint is present.
let max_parent_set = self.max_parent_set.unwrap_or(net.get_number_of_nodes());
//Reset the adj matrix
net.initialize_adj_matrix();
//Iterate over each node to learn their parent set.
for node in net.get_node_indices() {
//Initialize an empty parent set.
let mut parent_set: BTreeSet<usize> = BTreeSet::new();
//Compute the score for the empty parent set
let mut current_score = self.score_function.call(&net, node, &parent_set, dataset);
//Set the old score to -\infty.
let mut old_score = f64::NEG_INFINITY;
//Iterate until convergence
while current_score > old_score {
//Save the current_score.
old_score = current_score;
//Iterate over each node.
for parent in net.get_node_indices() {
//Continue if the parent and the node are the same.
if parent == node {
continue;
}
//Try to remove parent from the parent_set.
let is_removed = parent_set.remove(&parent);
//If parent was not in the parent_set add it.
if !is_removed && parent_set.len() < max_parent_set {
parent_set.insert(parent);
}
//Compute the score with the modified parent_set.
let tmp_score = self.score_function.call(&net, node, &parent_set, dataset);
//If tmp_score is worst than current_score revert the change to the parent set
if tmp_score < current_score {
if is_removed {
parent_set.insert(parent);
} else {
parent_set.remove(&parent);
}
}
//Otherwise save the computed score as current_score
else {
current_score = tmp_score;
}
}
}
//Apply the learned parent_set to the network struct.
parent_set.iter().for_each(|p| net.add_edge(*p, node));
}
return net;
}
}

@ -0,0 +1,136 @@
use crate::network;
use crate::parameter_learning;
use crate::params;
use crate::tools;
use ndarray::prelude::*;
use statrs::function::gamma;
use std::collections::BTreeSet;
pub trait ScoreFunction {
fn call<T>(
&self,
net: &T,
node: usize,
parent_set: &BTreeSet<usize>,
dataset: &tools::Dataset,
) -> f64
where
T: network::Network;
}
pub struct LogLikelihood {
alpha: usize,
tau: f64,
}
impl LogLikelihood {
pub fn init(alpha: usize, tau: f64) -> LogLikelihood {
//Tau must be >=0.0
if tau < 0.0 {
panic!("tau must be >=0.0");
}
LogLikelihood { alpha, tau }
}
fn compute_score<T>(
&self,
net: &T,
node: usize,
parent_set: &BTreeSet<usize>,
dataset: &tools::Dataset,
) -> (f64, Array3<usize>)
where
T: network::Network,
{
//Identify the type of node used
match &net.get_node(node).params {
params::Params::DiscreteStatesContinousTime(_params) => {
//Compute the sufficient statistics M (number of transistions) and T (residence
//time)
let (M, T) =
parameter_learning::sufficient_statistics(net, dataset, node, parent_set);
//Scale alpha accordingly to the size of the parent set
let alpha = self.alpha as f64 / M.shape()[0] as f64;
//Scale tau accordingly to the size of the parent set
let tau = self.tau / M.shape()[0] as f64;
//Compute the log likelihood for q
let log_ll_q:f64 = M
.sum_axis(Axis(2))
.iter()
.zip(T.iter())
.map(|(m, t)| {
gamma::ln_gamma(alpha + *m as f64 + 1.0)
+ (alpha + 1.0) * f64::ln(tau)
- gamma::ln_gamma(alpha + 1.0)
- (alpha + *m as f64 + 1.0) * f64::ln(tau + t)
})
.sum();
//Compute the log likelihood for theta
let log_ll_theta: f64 = M.outer_iter()
.map(|x| x.outer_iter()
.map(|y| gamma::ln_gamma(alpha)
- gamma::ln_gamma(alpha + y.sum() as f64)
+ y.iter().map(|z|
gamma::ln_gamma(alpha + *z as f64)
- gamma::ln_gamma(alpha)).sum::<f64>()).sum::<f64>()).sum();
(log_ll_theta + log_ll_q, M)
}
}
}
}
impl ScoreFunction for LogLikelihood {
fn call<T>(
&self,
net: &T,
node: usize,
parent_set: &BTreeSet<usize>,
dataset: &tools::Dataset,
) -> f64
where
T: network::Network,
{
self.compute_score(net, node, parent_set, dataset).0
}
}
pub struct BIC {
ll: LogLikelihood
}
impl BIC {
pub fn init(alpha: usize, tau: f64) -> BIC {
BIC {
ll: LogLikelihood::init(alpha, tau)
}
}
}
impl ScoreFunction for BIC {
fn call<T>(
&self,
net: &T,
node: usize,
parent_set: &BTreeSet<usize>,
dataset: &tools::Dataset,
) -> f64
where
T: network::Network {
//Compute the log-likelihood
let (ll, M) = self.ll.compute_score(net, node, parent_set, dataset);
//Compute the number of parameters
let n_parameters = M.shape()[0] * M.shape()[1] * (M.shape()[2] - 1);
//TODO: Optimize this
//Compute the sample size
let sample_size: usize = dataset.get_trajectories().iter().map(|x| x.get_time().len() - 1).sum();
//Compute BIC
ll - f64::ln(sample_size as f64) / 2.0 * n_parameters as f64
}
}

@ -3,16 +3,54 @@ use crate::node;
use crate::params; use crate::params;
use crate::params::ParamsTrait; use crate::params::ParamsTrait;
use ndarray::prelude::*; use ndarray::prelude::*;
use rand_chacha::ChaCha8Rng;
use rand_chacha::rand_core::SeedableRng; use rand_chacha::rand_core::SeedableRng;
use rand_chacha::ChaCha8Rng;
pub struct Trajectory { pub struct Trajectory {
pub time: Array1<f64>, time: Array1<f64>,
pub events: Array2<usize>, events: Array2<usize>,
}
impl Trajectory {
pub fn init(time: Array1<f64>, events: Array2<usize>) -> Trajectory {
//Events and time are two part of the same trajectory. For this reason they must have the
//same number of sample.
if time.shape()[0] != events.shape()[0] {
panic!("time.shape[0] must be equal to events.shape[0]");
}
Trajectory { time, events }
}
pub fn get_time(&self) -> &Array1<f64> {
&self.time
}
pub fn get_events(&self) -> &Array2<usize> {
&self.events
}
} }
pub struct Dataset { pub struct Dataset {
pub trajectories: Vec<Trajectory>, trajectories: Vec<Trajectory>,
}
impl Dataset {
pub fn init(trajectories: Vec<Trajectory>) -> Dataset {
//All the trajectories in the same dataset must represent the same process. For this reason
//each trajectory must represent the same number of variables.
if trajectories
.iter()
.any(|x| trajectories[0].get_events().shape()[1] != x.get_events().shape()[1])
{
panic!("All the trajectories mus represents the same number of variables");
}
Dataset { trajectories }
}
pub fn get_trajectories(&self) -> &Vec<Trajectory> {
&self.trajectories
}
} }
pub fn trajectory_generator<T: network::Network>( pub fn trajectory_generator<T: network::Network>(
@ -21,25 +59,38 @@ pub fn trajectory_generator<T: network::Network>(
t_end: f64, t_end: f64,
seed: Option<u64>, seed: Option<u64>,
) -> Dataset { ) -> Dataset {
let mut dataset = Dataset {
trajectories: Vec::new(), //Tmp growing vector containing generated trajectories.
let mut trajectories: Vec<Trajectory> = Vec::new();
//Random Generator object
let mut rng: ChaCha8Rng = match seed {
//If a seed is present use it to initialize the random generator.
Some(seed) => SeedableRng::seed_from_u64(seed),
//Otherwise create a new random generator using the method `from_entropy`
None => SeedableRng::from_entropy()
}; };
let seed = seed.unwrap_or_else(rand::random); //Each iteration generate one trajectory
let mut rng = ChaCha8Rng::seed_from_u64(seed);
let node_idx: Vec<_> = net.get_node_indices().collect();
for _ in 0..n_trajectories { for _ in 0..n_trajectories {
//Current time of the sampling process
let mut t = 0.0; let mut t = 0.0;
//History of all the moments in which something changed
let mut time: Vec<f64> = Vec::new(); let mut time: Vec<f64> = Vec::new();
let mut events: Vec<Array1<usize>> = Vec::new(); //Configuration of the process variables at time t initialized with an uniform
let mut current_state: Vec<params::StateType> = node_idx //distribution.
.iter() let mut current_state: Vec<params::StateType> = net.get_node_indices()
.map(|x| net.get_node(*x).params.get_random_state_uniform(&mut rng)) .map(|x| net.get_node(x).params.get_random_state_uniform(&mut rng))
.collect(); .collect();
//History of all the configurations of the process variables.
let mut events: Vec<Array1<usize>> = Vec::new();
//Vector containing to time to the next transition for each variable.
let mut next_transitions: Vec<Option<f64>> = let mut next_transitions: Vec<Option<f64>> =
(0..node_idx.len()).map(|_| Option::None).collect(); net.get_node_indices().map(|_| Option::None).collect();
//Add the starting time for the trajectory.
time.push(t.clone());
//Add the starting configuration of the trajectory.
events.push( events.push(
current_state current_state
.iter() .iter()
@ -48,8 +99,9 @@ pub fn trajectory_generator<T: network::Network>(
}) })
.collect(), .collect(),
); );
time.push(t.clone()); //Generate new samples until ending time is reached.
while t < t_end { while t < t_end {
//Generate the next transition time for each uninitialized variable.
for (idx, val) in next_transitions.iter_mut().enumerate() { for (idx, val) in next_transitions.iter_mut().enumerate() {
if let None = val { if let None = val {
*val = Some( *val = Some(
@ -65,19 +117,24 @@ pub fn trajectory_generator<T: network::Network>(
); );
} }
} }
//Get the variable with the smallest transition time.
let next_node_transition = next_transitions let next_node_transition = next_transitions
.iter() .iter()
.enumerate() .enumerate()
.min_by(|x, y| x.1.unwrap().partial_cmp(&y.1.unwrap()).unwrap()) .min_by(|x, y| x.1.unwrap().partial_cmp(&y.1.unwrap()).unwrap())
.unwrap() .unwrap()
.0; .0;
//Check if the next transition take place after the ending time.
if next_transitions[next_node_transition].unwrap() > t_end { if next_transitions[next_node_transition].unwrap() > t_end {
break; break;
} }
//Get the time in which the next transition occurs.
t = next_transitions[next_node_transition].unwrap().clone(); t = next_transitions[next_node_transition].unwrap().clone();
//Add the transition time to next
time.push(t.clone()); time.push(t.clone());
//Compute the new state of the transitioning variable.
current_state[next_node_transition] = net current_state[next_node_transition] = net
.get_node(next_node_transition) .get_node(next_node_transition)
.params .params
@ -89,7 +146,8 @@ pub fn trajectory_generator<T: network::Network>(
&mut rng, &mut rng,
) )
.unwrap(); .unwrap();
//Add the new state to events
events.push(Array::from_vec( events.push(Array::from_vec(
current_state current_state
.iter() .iter()
@ -98,13 +156,16 @@ pub fn trajectory_generator<T: network::Network>(
}) })
.collect(), .collect(),
)); ));
//Reset the next transition time for the transitioning node.
next_transitions[next_node_transition] = None; next_transitions[next_node_transition] = None;
//Reset the next transition time for each child of the transitioning node.
for child in net.get_children_set(next_node_transition) { for child in net.get_children_set(next_node_transition) {
next_transitions[child] = None next_transitions[child] = None
} }
} }
//Add current_state as last state.
events.push( events.push(
current_state current_state
.iter() .iter()
@ -113,16 +174,19 @@ pub fn trajectory_generator<T: network::Network>(
}) })
.collect(), .collect(),
); );
//Add t_end as last time.
time.push(t_end.clone()); time.push(t_end.clone());
dataset.trajectories.push(Trajectory { //Add the sampled trajectory to trajectories.
time: Array::from_vec(time), trajectories.push(Trajectory::init(
events: Array2::from_shape_vec( Array::from_vec(time),
Array2::from_shape_vec(
(events.len(), current_state.len()), (events.len(), current_state.len()),
events.iter().flatten().cloned().collect(), events.iter().flatten().cloned().collect(),
) )
.unwrap(), .unwrap(),
}); ));
} }
dataset //Return a dataset object with the sampled trajectories.
Dataset::init(trajectories)
} }

@ -0,0 +1,260 @@
mod utils;
use utils::*;
use rustyCTBN::ctbn::*;
use rustyCTBN::network::Network;
use rustyCTBN::tools::*;
use rustyCTBN::structure_learning::score_function::*;
use rustyCTBN::structure_learning::score_based_algorithm::*;
use rustyCTBN::structure_learning::StructureLearningAlgorithm;
use ndarray::{arr1, arr2, arr3};
use std::collections::BTreeSet;
use rustyCTBN::params;
#[macro_use]
extern crate approx;
#[test]
fn simple_score_test() {
let mut net = CtbnNetwork::init();
let n1 = net
.add_node(generate_discrete_time_continous_node(String::from("n1"),2))
.unwrap();
let trj = Trajectory::init(
arr1(&[0.0,0.1,0.3]),
arr2(&[[0],[1],[1]]));
let dataset = Dataset::init(vec![trj]);
let ll = LogLikelihood::init(1, 1.0);
assert_abs_diff_eq!(0.04257, ll.call(&net, n1, &BTreeSet::new(), &dataset), epsilon=1e-3);
}
#[test]
fn simple_bic() {
let mut net = CtbnNetwork::init();
let n1 = net
.add_node(generate_discrete_time_continous_node(String::from("n1"),2))
.unwrap();
let trj = Trajectory::init(
arr1(&[0.0,0.1,0.3]),
arr2(&[[0],[1],[1]]));
let dataset = Dataset::init(vec![trj]);
let bic = BIC::init(1, 1.0);
assert_abs_diff_eq!(-0.65058, bic.call(&net, n1, &BTreeSet::new(), &dataset), epsilon=1e-3);
}
fn check_compatibility_between_dataset_and_network<T: StructureLearningAlgorithm> (sl: T) {
let mut net = CtbnNetwork::init();
let n1 = net
.add_node(generate_discrete_time_continous_node(String::from("n1"),3))
.unwrap();
let n2 = net
.add_node(generate_discrete_time_continous_node(String::from("n2"),3))
.unwrap();
net.add_edge(n1, n2);
match &mut net.get_node_mut(n1).params {
params::Params::DiscreteStatesContinousTime(param) => {
assert_eq!(Ok(()), param.set_cim(arr3(&[[[-3.0, 2.0, 1.0],
[1.5, -2.0, 0.5],
[0.4, 0.6, -1.0]]])));
}
}
match &mut net.get_node_mut(n2).params {
params::Params::DiscreteStatesContinousTime(param) => {
assert_eq!(Ok(()), param.set_cim(arr3(&[
[[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]],
[[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]],
[[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]],
])));
}
}
let data = trajectory_generator(&net, 100, 20.0, Some(6347747169756259),);
let mut net = CtbnNetwork::init();
let _n1 = net
.add_node(generate_discrete_time_continous_node(String::from("n1"),3))
.unwrap();
let net = sl.fit_transform(net, &data);
}
#[test]
#[should_panic]
pub fn check_compatibility_between_dataset_and_network_hill_climbing() {
let ll = LogLikelihood::init(1, 1.0);
let hl = HillClimbing::init(ll, None);
check_compatibility_between_dataset_and_network(hl);
}
fn learn_ternary_net_2_nodes<T: StructureLearningAlgorithm> (sl: T) {
let mut net = CtbnNetwork::init();
let n1 = net
.add_node(generate_discrete_time_continous_node(String::from("n1"),3))
.unwrap();
let n2 = net
.add_node(generate_discrete_time_continous_node(String::from("n2"),3))
.unwrap();
net.add_edge(n1, n2);
match &mut net.get_node_mut(n1).params {
params::Params::DiscreteStatesContinousTime(param) => {
assert_eq!(Ok(()), param.set_cim(arr3(&[[[-3.0, 2.0, 1.0],
[1.5, -2.0, 0.5],
[0.4, 0.6, -1.0]]])));
}
}
match &mut net.get_node_mut(n2).params {
params::Params::DiscreteStatesContinousTime(param) => {
assert_eq!(Ok(()), param.set_cim(arr3(&[
[[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]],
[[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]],
[[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]],
])));
}
}
let data = trajectory_generator(&net, 100, 20.0, Some(6347747169756259),);
let net = sl.fit_transform(net, &data);
assert_eq!(BTreeSet::from_iter(vec![n1]), net.get_parent_set(n2));
assert_eq!(BTreeSet::new(), net.get_parent_set(n1));
}
#[test]
pub fn learn_ternary_net_2_nodes_hill_climbing_ll() {
let ll = LogLikelihood::init(1, 1.0);
let hl = HillClimbing::init(ll, None);
learn_ternary_net_2_nodes(hl);
}
#[test]
pub fn learn_ternary_net_2_nodes_hill_climbing_bic() {
let bic = BIC::init(1, 1.0);
let hl = HillClimbing::init(bic, None);
learn_ternary_net_2_nodes(hl);
}
fn get_mixed_discrete_net_3_nodes_with_data() -> (CtbnNetwork, Dataset) {
let mut net = CtbnNetwork::init();
let n1 = net
.add_node(generate_discrete_time_continous_node(String::from("n1"),3))
.unwrap();
let n2 = net
.add_node(generate_discrete_time_continous_node(String::from("n2"),3))
.unwrap();
let n3 = net
.add_node(generate_discrete_time_continous_node(String::from("n3"),4))
.unwrap();
net.add_edge(n1, n2);
net.add_edge(n1, n3);
net.add_edge(n2, n3);
match &mut net.get_node_mut(n1).params {
params::Params::DiscreteStatesContinousTime(param) => {
assert_eq!(Ok(()), param.set_cim(arr3(&[[[-3.0, 2.0, 1.0],
[1.5, -2.0, 0.5],
[0.4, 0.6, -1.0]]])));
}
}
match &mut net.get_node_mut(n2).params {
params::Params::DiscreteStatesContinousTime(param) => {
assert_eq!(Ok(()), param.set_cim(arr3(&[
[[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]],
[[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]],
[[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]],
])));
}
}
match &mut net.get_node_mut(n3).params {
params::Params::DiscreteStatesContinousTime(param) => {
assert_eq!(Ok(()), param.set_cim(arr3(&[
[[-1.0, 0.5, 0.3, 0.2], [0.5, -4.0, 2.5, 1.0], [2.5, 0.5, -4.0, 1.0], [0.7, 0.2, 0.1, -1.0]],
[[-6.0, 2.0, 3.0, 1.0], [1.5, -3.0, 0.5, 1.0], [2.0, 1.3, -5.0 ,1.7], [2.5, 0.5, 1.0, -4.0]],
[[-1.3, 0.3, 0.1, 0.9], [1.4, -4.0, 0.5, 2.1], [1.0, 1.5, -3.0, 0.5], [0.4, 0.3, 0.1, -0.8]],
[[-2.0, 1.0, 0.7, 0.3], [1.3, -5.9, 2.7, 1.9], [2.0, 1.5, -4.0, 0.5], [0.2, 0.7, 0.1, -1.0]],
[[-6.0, 1.0, 2.0, 3.0], [0.5, -3.0, 1.0, 1.5], [1.4, 2.1, -4.3, 0.8], [0.5, 1.0, 2.5, -4.0]],
[[-1.3, 0.9, 0.3, 0.1], [0.1, -1.3, 0.2, 1.0], [0.5, 1.0, -3.0, 1.5], [0.1, 0.4, 0.3, -0.8]],
[[-2.0, 1.0, 0.6, 0.4], [2.6, -7.1, 1.4, 3.1], [5.0, 1.0, -8.0, 2.0], [1.4, 0.4, 0.2, -2.0]],
[[-3.0, 1.0, 1.5, 0.5], [3.0, -6.0, 1.0, 2.0], [0.3, 0.5, -1.9, 1.1], [5.0, 1.0, 2.0, -8.0]],
[[-2.6, 0.6, 0.2, 1.8], [2.0, -6.0, 3.0, 1.0], [0.1, 0.5, -1.3, 0.7], [0.8, 0.6, 0.2, -1.6]],
])));
}
}
let data = trajectory_generator(&net, 300, 30.0, Some(6347747169756259),);
return (net, data);
}
fn learn_mixed_discrete_net_3_nodes<T: StructureLearningAlgorithm> (sl: T) {
let (net, data) = get_mixed_discrete_net_3_nodes_with_data();
let net = sl.fit_transform(net, &data);
assert_eq!(BTreeSet::new(), net.get_parent_set(0));
assert_eq!(BTreeSet::from_iter(vec![0]), net.get_parent_set(1));
assert_eq!(BTreeSet::from_iter(vec![0, 1]), net.get_parent_set(2));
}
#[test]
pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_ll() {
let ll = LogLikelihood::init(1, 1.0);
let hl = HillClimbing::init(ll, None);
learn_mixed_discrete_net_3_nodes(hl);
}
#[test]
pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_bic() {
let bic = BIC::init(1, 1.0);
let hl = HillClimbing::init(bic, None);
learn_mixed_discrete_net_3_nodes(hl);
}
fn learn_mixed_discrete_net_3_nodes_1_parent_constraint<T: StructureLearningAlgorithm> (sl: T) {
let (net, data) = get_mixed_discrete_net_3_nodes_with_data();
let net = sl.fit_transform(net, &data);
assert_eq!(BTreeSet::new(), net.get_parent_set(0));
assert_eq!(BTreeSet::from_iter(vec![0]), net.get_parent_set(1));
assert_eq!(BTreeSet::from_iter(vec![0]), net.get_parent_set(2));
}
#[test]
pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_ll_1_parent_constraint() {
let ll = LogLikelihood::init(1, 1.0);
let hl = HillClimbing::init(ll, Some(1));
learn_mixed_discrete_net_3_nodes_1_parent_constraint(hl);
}
#[test]
pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_bic_1_parent_constraint() {
let bic = BIC::init(1, 1.0);
let hl = HillClimbing::init(bic, Some(1));
learn_mixed_discrete_net_3_nodes_1_parent_constraint(hl);
}

@ -5,7 +5,7 @@ use rustyCTBN::ctbn::*;
use rustyCTBN::node; use rustyCTBN::node;
use rustyCTBN::params; use rustyCTBN::params;
use std::collections::BTreeSet; use std::collections::BTreeSet;
use ndarray::arr3; use ndarray::{arr1, arr2, arr3};
@ -38,8 +38,30 @@ fn run_sampling() {
let data = trajectory_generator(&net, 4, 1.0, Some(6347747169756259),); let data = trajectory_generator(&net, 4, 1.0, Some(6347747169756259),);
assert_eq!(4, data.trajectories.len()); assert_eq!(4, data.get_trajectories().len());
assert_relative_eq!(1.0, data.trajectories[0].time[data.trajectories[0].time.len()-1]); assert_relative_eq!(1.0, data.get_trajectories()[0].get_time()[data.get_trajectories()[0].get_time().len()-1]);
} }
#[test]
#[should_panic]
fn trajectory_wrong_shape() {
let time = arr1(&[0.0, 0.2]);
let events = arr2(&[[0,3]]);
Trajectory::init(time, events);
}
#[test]
#[should_panic]
fn dataset_wrong_shape() {
let time = arr1(&[0.0, 0.2]);
let events = arr2(&[[0,3], [1,2]]);
let t1 = Trajectory::init(time, events);
let time = arr1(&[0.0, 0.2]);
let events = arr2(&[[0,3,3], [1,2,3]]);
let t2 = Trajectory::init(time, events);
Dataset::init(vec![t1, t2]);
}

Loading…
Cancel
Save