|
|
|
@ -27,16 +27,16 @@ fn learn_binary_cim<T: ParameterLearning> (pl: T) { |
|
|
|
|
|
|
|
|
|
match &mut net.get_node_mut(n1).params { |
|
|
|
|
params::Params::DiscreteStatesContinousTime(param) => { |
|
|
|
|
param.cim = Some(arr3(&[[[-3.0, 3.0], [2.0, -2.0]]])); |
|
|
|
|
assert_eq!(Ok(()), param.set_cim(arr3(&[[[-3.0, 3.0], [2.0, -2.0]]]))); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
match &mut net.get_node_mut(n2).params { |
|
|
|
|
params::Params::DiscreteStatesContinousTime(param) => { |
|
|
|
|
param.cim = Some(arr3(&[ |
|
|
|
|
assert_eq!(Ok(()), param.set_cim(arr3(&[ |
|
|
|
|
[[-1.0, 1.0], [4.0, -4.0]], |
|
|
|
|
[[-6.0, 6.0], [2.0, -2.0]], |
|
|
|
|
])); |
|
|
|
|
]))); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -77,19 +77,19 @@ fn learn_ternary_cim<T: ParameterLearning> (pl: T) { |
|
|
|
|
|
|
|
|
|
match &mut net.get_node_mut(n1).params { |
|
|
|
|
params::Params::DiscreteStatesContinousTime(param) => { |
|
|
|
|
param.cim = Some(arr3(&[[[-3.0, 2.0, 1.0],
|
|
|
|
|
assert_eq!(Ok(()), param.set_cim(arr3(&[[[-3.0, 2.0, 1.0],
|
|
|
|
|
[1.5, -2.0, 0.5], |
|
|
|
|
[0.4, 0.6, -1.0]]])); |
|
|
|
|
[0.4, 0.6, -1.0]]]))); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
match &mut net.get_node_mut(n2).params { |
|
|
|
|
params::Params::DiscreteStatesContinousTime(param) => { |
|
|
|
|
param.cim = Some(arr3(&[ |
|
|
|
|
assert_eq!(Ok(()), param.set_cim(arr3(&[ |
|
|
|
|
[[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]], |
|
|
|
|
[[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]], |
|
|
|
|
[[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]], |
|
|
|
|
])); |
|
|
|
|
]))); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -132,19 +132,19 @@ fn learn_ternary_cim_no_parents<T: ParameterLearning> (pl: T) { |
|
|
|
|
|
|
|
|
|
match &mut net.get_node_mut(n1).params { |
|
|
|
|
params::Params::DiscreteStatesContinousTime(param) => { |
|
|
|
|
param.cim = Some(arr3(&[[[-3.0, 2.0, 1.0],
|
|
|
|
|
assert_eq!(Ok(()), param.set_cim(arr3(&[[[-3.0, 2.0, 1.0],
|
|
|
|
|
[1.5, -2.0, 0.5], |
|
|
|
|
[0.4, 0.6, -1.0]]])); |
|
|
|
|
[0.4, 0.6, -1.0]]]))); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
match &mut net.get_node_mut(n2).params { |
|
|
|
|
params::Params::DiscreteStatesContinousTime(param) => { |
|
|
|
|
param.cim = Some(arr3(&[ |
|
|
|
|
assert_eq!(Ok(()), param.set_cim(arr3(&[ |
|
|
|
|
[[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]], |
|
|
|
|
[[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]], |
|
|
|
|
[[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]], |
|
|
|
|
])); |
|
|
|
|
]))); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -192,28 +192,28 @@ fn learn_mixed_discrete_cim<T: ParameterLearning> (pl: T) { |
|
|
|
|
|
|
|
|
|
match &mut net.get_node_mut(n1).params { |
|
|
|
|
params::Params::DiscreteStatesContinousTime(param) => { |
|
|
|
|
param.cim = Some(arr3(&[[[-3.0, 2.0, 1.0],
|
|
|
|
|
assert_eq!(Ok(()), param.set_cim(arr3(&[[[-3.0, 2.0, 1.0],
|
|
|
|
|
[1.5, -2.0, 0.5], |
|
|
|
|
[0.4, 0.6, -1.0]]])); |
|
|
|
|
[0.4, 0.6, -1.0]]]))); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
match &mut net.get_node_mut(n2).params { |
|
|
|
|
params::Params::DiscreteStatesContinousTime(param) => { |
|
|
|
|
param.cim = Some(arr3(&[ |
|
|
|
|
assert_eq!(Ok(()), param.set_cim(arr3(&[ |
|
|
|
|
[[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]], |
|
|
|
|
[[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]], |
|
|
|
|
[[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]], |
|
|
|
|
])); |
|
|
|
|
]))); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
match &mut net.get_node_mut(n3).params { |
|
|
|
|
params::Params::DiscreteStatesContinousTime(param) => { |
|
|
|
|
param.cim = Some(arr3(&[ |
|
|
|
|
assert_eq!(Ok(()), param.set_cim(arr3(&[ |
|
|
|
|
[[-1.0, 0.5, 0.3, 0.2], [0.5, -4.0, 2.5, 1.0], [2.5, 0.5, -4.0, 1.0], [0.7, 0.2, 0.1, -1.0]], |
|
|
|
|
[[-6.0, 2.0, 3.0, 1.0], [1.5, -3.0, 0.5, 1.0], [2.0, 1.3, -5.0 , 1.7], [2.5, 0.5, 1.0, -4.0]], |
|
|
|
|
[[-6.0, 2.0, 3.0, 1.0], [1.5, -3.0, 0.5, 1.0], [2.0, 1.3, -5.0 ,1.7], [2.5, 0.5, 1.0, -4.0]], |
|
|
|
|
[[-1.3, 0.3, 0.1, 0.9], [1.4, -4.0, 0.5, 2.1], [1.0, 1.5, -3.0, 0.5], [0.4, 0.3, 0.1, -0.8]], |
|
|
|
|
|
|
|
|
|
[[-2.0, 1.0, 0.7, 0.3], [1.3, -5.9, 2.7, 1.9], [2.0, 1.5, -4.0, 0.5], [0.2, 0.7, 0.1, -1.0]], |
|
|
|
@ -223,12 +223,12 @@ fn learn_mixed_discrete_cim<T: ParameterLearning> (pl: T) { |
|
|
|
|
[[-2.0, 1.0, 0.6, 0.4], [2.6, -7.1, 1.4, 3.1], [5.0, 1.0, -8.0, 2.0], [1.4, 0.4, 0.2, -2.0]], |
|
|
|
|
[[-3.0, 1.0, 1.5, 0.5], [3.0, -6.0, 1.0, 2.0], [0.3, 0.5, -1.9, 1.1], [5.0, 1.0, 2.0, -8.0]], |
|
|
|
|
[[-2.6, 0.6, 0.2, 1.8], [2.0, -6.0, 3.0, 1.0], [0.1, 0.5, -1.3, 0.7], [0.8, 0.6, 0.2, -1.6]], |
|
|
|
|
])); |
|
|
|
|
]))); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let data = trajectory_generator(&net, 300, 200.0); |
|
|
|
|
let data = trajectory_generator(&net, 300, 300.0); |
|
|
|
|
let (CIM, M, T) = pl.fit(&net, &data, 2, None); |
|
|
|
|
print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T); |
|
|
|
|
assert_eq!(CIM.shape(), [9, 4, 4]); |
|
|
|
|