|
|
@ -41,7 +41,7 @@ fn learn_binary_cim_MLE() { |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
let data = trajectory_generator(Box::new(&net), 100, 100.0); |
|
|
|
let data = trajectory_generator(&net, 100, 100.0); |
|
|
|
let mle = MLE{}; |
|
|
|
let mle = MLE{}; |
|
|
|
let (CIM, M, T) = mle.fit(Box::new(&net), &data, 1, None); |
|
|
|
let (CIM, M, T) = mle.fit(Box::new(&net), &data, 1, None); |
|
|
|
print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T); |
|
|
|
print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T); |
|
|
@ -82,7 +82,7 @@ fn learn_ternary_cim_MLE() { |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
let data = trajectory_generator(Box::new(&net), 100, 200.0); |
|
|
|
let data = trajectory_generator(&net, 100, 200.0); |
|
|
|
let mle = MLE{}; |
|
|
|
let mle = MLE{}; |
|
|
|
let (CIM, M, T) = mle.fit(Box::new(&net), &data, 1, None); |
|
|
|
let (CIM, M, T) = mle.fit(Box::new(&net), &data, 1, None); |
|
|
|
print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T); |
|
|
|
print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T); |
|
|
@ -123,7 +123,7 @@ fn learn_ternary_cim_MLE_no_parents() { |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
let data = trajectory_generator(Box::new(&net), 100, 200.0); |
|
|
|
let data = trajectory_generator(&net, 100, 200.0); |
|
|
|
let mle = MLE{}; |
|
|
|
let mle = MLE{}; |
|
|
|
let (CIM, M, T) = mle.fit(Box::new(&net), &data, 0, None); |
|
|
|
let (CIM, M, T) = mle.fit(Box::new(&net), &data, 0, None); |
|
|
|
print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T); |
|
|
|
print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T); |
|
|
|