Added first battery of benchmarks for CTPC

88-feature-add-benchmarks
Meliurwen 2 years ago
parent e638a627bb
commit addcf5a2ae
Signed by: meliurwen
GPG Key ID: 818A8B35E9F1CE10
  1. 5
      reCTBN/Cargo.toml
  2. 88
      reCTBN/benches/structure_learning.rs

@ -18,3 +18,8 @@ rayon = "~1.6"
[dev-dependencies]
approx = { package = "approx", version = "~0.5" }
criterion = "0.4.*"
[[bench]]
name = "structure_learning"
harness = false

@ -0,0 +1,88 @@
#![allow(non_snake_case)]
use std::collections::BTreeSet;
use std::time::Duration;
use criterion::{criterion_group, criterion_main, Criterion};
use reCTBN::params::DiscreteStatesContinousTimeParams;
use reCTBN::params::Params::DiscreteStatesContinousTime;
use reCTBN::process::NetworkProcess;
use reCTBN::parameter_learning::BayesianApproach;
use reCTBN::process::ctbn::CtbnNetwork;
use reCTBN::structure_learning::constraint_based_algorithm::CTPC;
use reCTBN::structure_learning::hypothesis_test::{ChiSquare, F};
use reCTBN::structure_learning::StructureLearningAlgorithm;
use reCTBN::tools::trajectory_generator;
use reCTBN::tools::Dataset;
use reCTBN::tools::RandomGraphGenerator;
use reCTBN::tools::RandomParametersGenerator;
use reCTBN::tools::UniformGraphGenerator;
use reCTBN::tools::UniformParametersGenerator;
fn uniform_parameters_generator_right_densities_ctmp() -> (CtbnNetwork, Dataset) {
let mut net = CtbnNetwork::new();
let nodes_cardinality = 5;
let domain_cardinality = 3;
for node in 0..nodes_cardinality {
// Create the domain for a discrete node
let mut domain = BTreeSet::new();
for dvalue in 0..domain_cardinality {
domain.insert(dvalue.to_string());
}
// Create the parameters for a discrete node using the domain
let param = DiscreteStatesContinousTimeParams::new(node.to_string(), domain);
//Create the node using the parameters
let node = DiscreteStatesContinousTime(param);
// Add the node to the network
net.add_node(node).unwrap();
}
// Initialize the Graph Generator using the one with an
// uniform distribution
let mut structure_generator = UniformGraphGenerator::new(1.0 / 3.0, Some(7641630759785120));
// Generate the graph directly on the network
structure_generator.generate_graph(&mut net);
// Initialize the parameters generator with uniform distributin
let mut cim_generator = UniformParametersGenerator::new(3.0..7.0, Some(7641630759785120));
// Generate CIMs with uniformly distributed parameters.
cim_generator.generate_parameters(&mut net);
let dataset = trajectory_generator(&net, 300, 200.0, Some(30230423));
return (net, dataset);
}
fn structure_learning_CTPC(net: CtbnNetwork, dataset: &Dataset) {
// Initialize the hypothesis tests to pass to the CTPC with their
// respective significance level `alpha`
let f = F::new(1e-6);
let chi_sq = ChiSquare::new(1e-4);
// Use the bayesian approach to learn the parameters
let parameter_learning = BayesianApproach { alpha: 1, tau: 1.0 };
//Initialize CTPC
let ctpc = CTPC::new(parameter_learning, f, chi_sq);
// Learn the structure of the network from the generated trajectory
ctpc.fit_transform(net, dataset);
}
pub fn criterion_benchmark_ctpc(c: &mut Criterion) {
let mut group = c.benchmark_group("structure_learning_CTPC");
// Configure Criterion.rs to detect smaller differences and increase sample size to improve
// precision and counteract the resulting noise.
group.sample_size(10).measurement_time(Duration::from_secs(20));
group.bench_function("CTPC", move |b| {
b.iter_batched(
|| uniform_parameters_generator_right_densities_ctmp(),
|(net, dataset)| structure_learning_CTPC(net, &dataset),
criterion::BatchSize::PerIteration,
)
});
group.finish();
}
criterion_group!(benches, criterion_benchmark_ctpc);
criterion_main!(benches);
Loading…
Cancel
Save