|
|
|
@ -15,8 +15,7 @@ use std::collections::BTreeSet; |
|
|
|
|
extern crate approx; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#[test] |
|
|
|
|
fn learn_binary_cim_MLE() { |
|
|
|
|
fn learn_binary_cim<T: ParameterLearning> (pl: T) { |
|
|
|
|
let mut net = CtbnNetwork::init(); |
|
|
|
|
let n1 = net |
|
|
|
|
.add_node(generate_discrete_time_continous_node(String::from("n1"),2)) |
|
|
|
@ -42,8 +41,7 @@ fn learn_binary_cim_MLE() { |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
let data = trajectory_generator(&net, 100, 100.0); |
|
|
|
|
let mle = MLE{}; |
|
|
|
|
let (CIM, M, T) = mle.fit(&net, &data, 1, None); |
|
|
|
|
let (CIM, M, T) = pl.fit(&net, &data, 1, None); |
|
|
|
|
print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T); |
|
|
|
|
assert_eq!(CIM.shape(), [2, 2, 2]); |
|
|
|
|
assert!(CIM.abs_diff_eq(&arr3(&[ |
|
|
|
@ -52,9 +50,22 @@ fn learn_binary_cim_MLE() { |
|
|
|
|
]), 0.2)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#[test] |
|
|
|
|
fn learn_binary_cim_MLE() { |
|
|
|
|
let mle = MLE{}; |
|
|
|
|
learn_binary_cim(mle); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#[test] |
|
|
|
|
fn learn_ternary_cim_MLE() { |
|
|
|
|
fn learn_binary_cim_BA() { |
|
|
|
|
let ba = BayesianApproach{ |
|
|
|
|
default_alpha: 1, |
|
|
|
|
default_tau: 1.0}; |
|
|
|
|
learn_binary_cim(ba); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
fn learn_ternary_cim<T: ParameterLearning> (pl: T) { |
|
|
|
|
let mut net = CtbnNetwork::init(); |
|
|
|
|
let n1 = net |
|
|
|
|
.add_node(generate_discrete_time_continous_node(String::from("n1"),3)) |
|
|
|
@ -83,8 +94,7 @@ fn learn_ternary_cim_MLE() { |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
let data = trajectory_generator(&net, 100, 200.0); |
|
|
|
|
let mle = MLE{}; |
|
|
|
|
let (CIM, M, T) = mle.fit(&net, &data, 1, None); |
|
|
|
|
let (CIM, M, T) = pl.fit(&net, &data, 1, None); |
|
|
|
|
print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T); |
|
|
|
|
assert_eq!(CIM.shape(), [3, 3, 3]); |
|
|
|
|
assert!(CIM.abs_diff_eq(&arr3(&[ |
|
|
|
@ -94,8 +104,23 @@ fn learn_ternary_cim_MLE() { |
|
|
|
|
]), 0.2)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#[test] |
|
|
|
|
fn learn_ternary_cim_MLE_no_parents() { |
|
|
|
|
fn learn_ternary_cim_MLE() { |
|
|
|
|
let mle = MLE{}; |
|
|
|
|
learn_ternary_cim(mle); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#[test] |
|
|
|
|
fn learn_ternary_cim_BA() { |
|
|
|
|
let ba = BayesianApproach{ |
|
|
|
|
default_alpha: 1, |
|
|
|
|
default_tau: 1.0}; |
|
|
|
|
learn_ternary_cim(ba); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
fn learn_ternary_cim_no_parents<T: ParameterLearning> (pl: T) { |
|
|
|
|
let mut net = CtbnNetwork::init(); |
|
|
|
|
let n1 = net |
|
|
|
|
.add_node(generate_discrete_time_continous_node(String::from("n1"),3)) |
|
|
|
@ -124,11 +149,115 @@ fn learn_ternary_cim_MLE_no_parents() { |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
let data = trajectory_generator(&net, 100, 200.0); |
|
|
|
|
let mle = MLE{}; |
|
|
|
|
let (CIM, M, T) = mle.fit(&net, &data, 0, None); |
|
|
|
|
let (CIM, M, T) = pl.fit(&net, &data, 0, None); |
|
|
|
|
print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T); |
|
|
|
|
assert_eq!(CIM.shape(), [1, 3, 3]); |
|
|
|
|
assert!(CIM.abs_diff_eq(&arr3(&[[[-3.0, 2.0, 1.0],
|
|
|
|
|
[1.5, -2.0, 0.5], |
|
|
|
|
[0.4, 0.6, -1.0]]]), 0.2)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#[test] |
|
|
|
|
fn learn_ternary_cim_no_parents_MLE() { |
|
|
|
|
let mle = MLE{}; |
|
|
|
|
learn_ternary_cim_no_parents(mle); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#[test] |
|
|
|
|
fn learn_ternary_cim_no_parents_BA() { |
|
|
|
|
let ba = BayesianApproach{ |
|
|
|
|
default_alpha: 1, |
|
|
|
|
default_tau: 1.0}; |
|
|
|
|
learn_ternary_cim_no_parents(ba); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fn learn_mixed_discrete_cim<T: ParameterLearning> (pl: T) { |
|
|
|
|
let mut net = CtbnNetwork::init(); |
|
|
|
|
let n1 = net |
|
|
|
|
.add_node(generate_discrete_time_continous_node(String::from("n1"),3)) |
|
|
|
|
.unwrap(); |
|
|
|
|
let n2 = net |
|
|
|
|
.add_node(generate_discrete_time_continous_node(String::from("n2"),3)) |
|
|
|
|
.unwrap(); |
|
|
|
|
|
|
|
|
|
let n3 = net |
|
|
|
|
.add_node(generate_discrete_time_continous_node(String::from("n3"),4)) |
|
|
|
|
.unwrap(); |
|
|
|
|
net.add_edge(n1, n2); |
|
|
|
|
net.add_edge(n1, n3); |
|
|
|
|
net.add_edge(n2, n3); |
|
|
|
|
|
|
|
|
|
match &mut net.get_node_mut(n1).params { |
|
|
|
|
params::Params::DiscreteStatesContinousTime(param) => { |
|
|
|
|
param.cim = Some(arr3(&[[[-3.0, 2.0, 1.0],
|
|
|
|
|
[1.5, -2.0, 0.5], |
|
|
|
|
[0.4, 0.6, -1.0]]])); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
match &mut net.get_node_mut(n2).params { |
|
|
|
|
params::Params::DiscreteStatesContinousTime(param) => { |
|
|
|
|
param.cim = Some(arr3(&[ |
|
|
|
|
[[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]], |
|
|
|
|
[[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]], |
|
|
|
|
[[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]], |
|
|
|
|
])); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
match &mut net.get_node_mut(n3).params { |
|
|
|
|
params::Params::DiscreteStatesContinousTime(param) => { |
|
|
|
|
param.cim = Some(arr3(&[ |
|
|
|
|
[[-1.0, 0.5, 0.3, 0.2], [0.5, -4.0, 2.5, 1.0], [2.5, 0.5, -4.0, 1.0], [0.7, 0.2, 0.1, -1.0]], |
|
|
|
|
[[-6.0, 2.0, 3.0, 1.0], [1.5, -3.0, 0.5, 1.0], [2.0, 1.3, -5.0 , 1.7], [2.5, 0.5, 1.0, -4.0]], |
|
|
|
|
[[-1.3, 0.3, 0.1, 0.9], [1.4, -4.0, 0.5, 2.1], [1.0, 1.5, -3.0, 0.5], [0.4, 0.3, 0.1, -0.8]], |
|
|
|
|
|
|
|
|
|
[[-2.0, 1.0, 0.7, 0.3], [1.3, -5.9, 2.7, 1.9], [2.0, 1.5, -4.0, 0.5], [0.2, 0.7, 0.1, -1.0]], |
|
|
|
|
[[-6.0, 1.0, 2.0, 3.0], [0.5, -3.0, 1.0, 1.5], [1.4, 2.1, -4.3, 0.8], [0.5, 1.0, 2.5, -4.0]], |
|
|
|
|
[[-1.3, 0.9, 0.3, 0.1], [0.1, -1.3, 0.2, 1.0], [0.5, 1.0, -3.0, 1.5], [0.1, 0.4, 0.3, -0.8]], |
|
|
|
|
|
|
|
|
|
[[-2.0, 1.0, 0.6, 0.4], [2.6, -7.1, 1.4, 3.1], [5.0, 1.0, -8.0, 2.0], [1.4, 0.4, 0.2, -2.0]], |
|
|
|
|
[[-3.0, 1.0, 1.5, 0.5], [3.0, -6.0, 1.0, 2.0], [0.3, 0.5, -1.9, 1.1], [5.0, 1.0, 2.0, -8.0]], |
|
|
|
|
[[-2.6, 0.6, 0.2, 1.8], [2.0, -6.0, 3.0, 1.0], [0.1, 0.5, -1.3, 0.7], [0.8, 0.6, 0.2, -1.6]], |
|
|
|
|
])); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let data = trajectory_generator(&net, 300, 200.0); |
|
|
|
|
let (CIM, M, T) = pl.fit(&net, &data, 2, None); |
|
|
|
|
print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T); |
|
|
|
|
assert_eq!(CIM.shape(), [9, 4, 4]); |
|
|
|
|
assert!(CIM.abs_diff_eq(&arr3(&[ |
|
|
|
|
[[-1.0, 0.5, 0.3, 0.2], [0.5, -4.0, 2.5, 1.0], [2.5, 0.5, -4.0, 1.0], [0.7, 0.2, 0.1, -1.0]], |
|
|
|
|
[[-6.0, 2.0, 3.0, 1.0], [1.5, -3.0, 0.5, 1.0], [2.0, 1.3, -5.0 , 1.7], [2.5, 0.5, 1.0, -4.0]], |
|
|
|
|
[[-1.3, 0.3, 0.1, 0.9], [1.4, -4.0, 0.5, 2.1], [1.0, 1.5, -3.0, 0.5], [0.4, 0.3, 0.1, -0.8]], |
|
|
|
|
|
|
|
|
|
[[-2.0, 1.0, 0.7, 0.3], [1.3, -5.9, 2.7, 1.9], [2.0, 1.5, -4.0, 0.5], [0.2, 0.7, 0.1, -1.0]], |
|
|
|
|
[[-6.0, 1.0, 2.0, 3.0], [0.5, -3.0, 1.0, 1.5], [1.4, 2.1, -4.3, 0.8], [0.5, 1.0, 2.5, -4.0]], |
|
|
|
|
[[-1.3, 0.9, 0.3, 0.1], [0.1, -1.3, 0.2, 1.0], [0.5, 1.0, -3.0, 1.5], [0.1, 0.4, 0.3, -0.8]], |
|
|
|
|
|
|
|
|
|
[[-2.0, 1.0, 0.6, 0.4], [2.6, -7.1, 1.4, 3.1], [5.0, 1.0, -8.0, 2.0], [1.4, 0.4, 0.2, -2.0]], |
|
|
|
|
[[-3.0, 1.0, 1.5, 0.5], [3.0, -6.0, 1.0, 2.0], [0.3, 0.5, -1.9, 1.1], [5.0, 1.0, 2.0, -8.0]], |
|
|
|
|
[[-2.6, 0.6, 0.2, 1.8], [2.0, -6.0, 3.0, 1.0], [0.1, 0.5, -1.3, 0.7], [0.8, 0.6, 0.2, -1.6]], |
|
|
|
|
]), 0.2)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#[test] |
|
|
|
|
fn learn_mixed_discrete_cim_MLE() { |
|
|
|
|
let mle = MLE{}; |
|
|
|
|
learn_mixed_discrete_cim(mle); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#[test] |
|
|
|
|
fn learn_mixed_discrete_cim_BA() { |
|
|
|
|
let ba = BayesianApproach{ |
|
|
|
|
default_alpha: 1, |
|
|
|
|
default_tau: 1.0}; |
|
|
|
|
learn_mixed_discrete_cim(ba); |
|
|
|
|
} |
|
|
|
|