|
|
@ -87,7 +87,7 @@ fn learn_ternary_net_2_nodes<T: StructureLearningAlgorithm> (sl: T) { |
|
|
|
|
|
|
|
|
|
|
|
let data = trajectory_generator(&net, 100, 20.0, Some(6347747169756259),); |
|
|
|
let data = trajectory_generator(&net, 100, 20.0, Some(6347747169756259),); |
|
|
|
|
|
|
|
|
|
|
|
let net = sl.call(net, &data); |
|
|
|
let net = sl.fit(net, &data); |
|
|
|
assert_eq!(BTreeSet::from_iter(vec![n1]), net.get_parent_set(n2)); |
|
|
|
assert_eq!(BTreeSet::from_iter(vec![n1]), net.get_parent_set(n2)); |
|
|
|
assert_eq!(BTreeSet::new(), net.get_parent_set(n1)); |
|
|
|
assert_eq!(BTreeSet::new(), net.get_parent_set(n1)); |
|
|
|
} |
|
|
|
} |
|
|
@ -164,7 +164,7 @@ fn learn_mixed_discrete_net_3_nodes<T: StructureLearningAlgorithm> (sl: T) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let data = trajectory_generator(&net, 300, 30.0, Some(6347747169756259),); |
|
|
|
let data = trajectory_generator(&net, 300, 30.0, Some(6347747169756259),); |
|
|
|
let net = sl.call(net, &data); |
|
|
|
let net = sl.fit(net, &data); |
|
|
|
|
|
|
|
|
|
|
|
assert_eq!(BTreeSet::new(), net.get_parent_set(n1)); |
|
|
|
assert_eq!(BTreeSet::new(), net.get_parent_set(n1)); |
|
|
|
assert_eq!(BTreeSet::from_iter(vec![n1]), net.get_parent_set(n2)); |
|
|
|
assert_eq!(BTreeSet::from_iter(vec![n1]), net.get_parent_set(n2)); |
|
|
|