|
|
|
use crate::network;
|
|
|
|
use crate::node;
|
|
|
|
use crate::params;
|
|
|
|
use crate::params::ParamsTrait;
|
|
|
|
use ndarray::prelude::*;
|
|
|
|
use rand_chacha::ChaCha8Rng;
|
|
|
|
use rand_core::SeedableRng;
|
|
|
|
|
|
|
|
pub struct Trajectory {
|
|
|
|
pub time: Array1<f64>,
|
|
|
|
pub events: Array2<usize>,
|
|
|
|
}
|
|
|
|
|
|
|
|
pub struct Dataset {
|
|
|
|
pub trajectories: Vec<Trajectory>,
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn trajectory_generator<T: network::Network>(
|
|
|
|
net: &T,
|
|
|
|
n_trajectories: u64,
|
|
|
|
t_end: f64,
|
|
|
|
seed: u64,
|
|
|
|
) -> Dataset {
|
|
|
|
let mut dataset = Dataset {
|
|
|
|
trajectories: Vec::new(),
|
|
|
|
};
|
|
|
|
|
|
|
|
let mut rng = ChaCha8Rng::seed_from_u64(seed);
|
|
|
|
|
|
|
|
let node_idx: Vec<_> = net.get_node_indices().collect();
|
|
|
|
for _ in 0..n_trajectories {
|
|
|
|
let mut t = 0.0;
|
|
|
|
let mut time: Vec<f64> = Vec::new();
|
|
|
|
let mut events: Vec<Array1<usize>> = Vec::new();
|
|
|
|
let mut current_state: Vec<params::StateType> = node_idx
|
|
|
|
.iter()
|
|
|
|
.map(|x| net.get_node(*x).params.get_random_state_uniform(&mut rng))
|
|
|
|
.collect();
|
|
|
|
let mut next_transitions: Vec<Option<f64>> =
|
|
|
|
(0..node_idx.len()).map(|_| Option::None).collect();
|
|
|
|
events.push(
|
|
|
|
current_state
|
|
|
|
.iter()
|
|
|
|
.map(|x| match x {
|
|
|
|
params::StateType::Discrete(state) => state.clone(),
|
|
|
|
})
|
|
|
|
.collect(),
|
|
|
|
);
|
|
|
|
time.push(t.clone());
|
|
|
|
while t < t_end {
|
|
|
|
for (idx, val) in next_transitions.iter_mut().enumerate() {
|
|
|
|
if let None = val {
|
|
|
|
*val = Some(
|
|
|
|
net.get_node(idx)
|
|
|
|
.params
|
|
|
|
.get_random_residence_time(
|
|
|
|
net.get_node(idx).params.state_to_index(¤t_state[idx]),
|
|
|
|
net.get_param_index_network(idx, ¤t_state),
|
|
|
|
&mut rng,
|
|
|
|
)
|
|
|
|
.unwrap()
|
|
|
|
+ t,
|
|
|
|
);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
let next_node_transition = next_transitions
|
|
|
|
.iter()
|
|
|
|
.enumerate()
|
|
|
|
.min_by(|x, y| x.1.unwrap().partial_cmp(&y.1.unwrap()).unwrap())
|
|
|
|
.unwrap()
|
|
|
|
.0;
|
|
|
|
if next_transitions[next_node_transition].unwrap() > t_end {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
t = next_transitions[next_node_transition].unwrap().clone();
|
|
|
|
time.push(t.clone());
|
|
|
|
|
|
|
|
current_state[next_node_transition] = net
|
|
|
|
.get_node(next_node_transition)
|
|
|
|
.params
|
|
|
|
.get_random_state(
|
|
|
|
net.get_node(next_node_transition)
|
|
|
|
.params
|
|
|
|
.state_to_index(¤t_state[next_node_transition]),
|
|
|
|
net.get_param_index_network(next_node_transition, ¤t_state),
|
|
|
|
&mut rng,
|
|
|
|
)
|
|
|
|
.unwrap();
|
|
|
|
|
|
|
|
events.push(Array::from_vec(
|
|
|
|
current_state
|
|
|
|
.iter()
|
|
|
|
.map(|x| match x {
|
|
|
|
params::StateType::Discrete(state) => state.clone(),
|
|
|
|
})
|
|
|
|
.collect(),
|
|
|
|
));
|
|
|
|
next_transitions[next_node_transition] = None;
|
|
|
|
|
|
|
|
for child in net.get_children_set(next_node_transition) {
|
|
|
|
next_transitions[child] = None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
events.push(
|
|
|
|
current_state
|
|
|
|
.iter()
|
|
|
|
.map(|x| match x {
|
|
|
|
params::StateType::Discrete(state) => state.clone(),
|
|
|
|
})
|
|
|
|
.collect(),
|
|
|
|
);
|
|
|
|
time.push(t_end.clone());
|
|
|
|
|
|
|
|
dataset.trajectories.push(Trajectory {
|
|
|
|
time: Array::from_vec(time),
|
|
|
|
events: Array2::from_shape_vec(
|
|
|
|
(events.len(), current_state.len()),
|
|
|
|
events.iter().flatten().cloned().collect(),
|
|
|
|
)
|
|
|
|
.unwrap(),
|
|
|
|
});
|
|
|
|
}
|
|
|
|
dataset
|
|
|
|
}
|