A new, blazing-fast learning engine for Continuous Time Bayesian Networks. Written in pure Rust. 🦀
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
reCTBN/src/tools.rs

127 lines
4.0 KiB

use crate::network;
use crate::node;
use crate::params;
use crate::params::ParamsTrait;
use ndarray::prelude::*;
use rand_chacha::ChaCha8Rng;
use rand_core::SeedableRng;
3 years ago
pub struct Trajectory {
3 years ago
pub time: Array1<f64>,
pub events: Array2<usize>,
3 years ago
}
pub struct Dataset {
pub trajectories: Vec<Trajectory>,
3 years ago
}
pub fn trajectory_generator<T: network::Network>(
net: &T,
n_trajectories: u64,
t_end: f64,
seed: u64,
) -> Dataset {
let mut dataset = Dataset {
trajectories: Vec::new(),
3 years ago
};
let mut rng = ChaCha8Rng::seed_from_u64(seed);
let node_idx: Vec<_> = net.get_node_indices().collect();
3 years ago
for _ in 0..n_trajectories {
let mut t = 0.0;
3 years ago
let mut time: Vec<f64> = Vec::new();
3 years ago
let mut events: Vec<Array1<usize>> = Vec::new();
let mut current_state: Vec<params::StateType> = node_idx
.iter()
.map(|x| net.get_node(*x).params.get_random_state_uniform(&mut rng))
.collect();
let mut next_transitions: Vec<Option<f64>> =
(0..node_idx.len()).map(|_| Option::None).collect();
events.push(
current_state
.iter()
.map(|x| match x {
params::StateType::Discrete(state) => state.clone(),
})
.collect(),
);
time.push(t.clone());
while t < t_end {
for (idx, val) in next_transitions.iter_mut().enumerate() {
if let None = val {
*val = Some(
net.get_node(idx)
.params
.get_random_residence_time(
net.get_node(idx).params.state_to_index(&current_state[idx]),
net.get_param_index_network(idx, &current_state),
&mut rng,
)
.unwrap()
+ t,
);
}
}
3 years ago
let next_node_transition = next_transitions
.iter()
.enumerate()
.min_by(|x, y| x.1.unwrap().partial_cmp(&y.1.unwrap()).unwrap())
.unwrap()
.0;
if next_transitions[next_node_transition].unwrap() > t_end {
break;
}
t = next_transitions[next_node_transition].unwrap().clone();
time.push(t.clone());
current_state[next_node_transition] = net
.get_node(next_node_transition)
.params
.get_random_state(
net.get_node(next_node_transition)
.params
.state_to_index(&current_state[next_node_transition]),
net.get_param_index_network(next_node_transition, &current_state),
&mut rng,
)
.unwrap();
events.push(Array::from_vec(
current_state
.iter()
.map(|x| match x {
params::StateType::Discrete(state) => state.clone(),
})
.collect(),
));
next_transitions[next_node_transition] = None;
for child in net.get_children_set(next_node_transition) {
next_transitions[child] = None
}
}
events.push(
current_state
.iter()
.map(|x| match x {
params::StateType::Discrete(state) => state.clone(),
})
.collect(),
);
time.push(t_end.clone());
dataset.trajectories.push(Trajectory {
3 years ago
time: Array::from_vec(time),
events: Array2::from_shape_vec(
(events.len(), current_state.len()),
events.iter().flatten().cloned().collect(),
)
.unwrap(),
});
3 years ago
}
dataset
}