A new, blazing-fast learning engine for Continuous Time Bayesian Networks. Written in pure Rust. 🦀
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
use ndarray::prelude::*;
|
|
|
|
use petgraph::prelude::*;
|
|
|
|
use crate::network;
|
|
|
|
use crate::node;
|
|
|
|
use crate::params::Params;
|
|
|
|
|
|
|
|
pub struct Trajectory {
|
|
|
|
time: Array1<f64>,
|
|
|
|
events: Array2<u32>
|
|
|
|
}
|
|
|
|
|
|
|
|
pub struct Dataset {
|
|
|
|
trajectories: Vec<Trajectory>
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
fn trajectory_generator(net: &Box<dyn network::Network>, n_trajectories: u64, t_end: f64) -> Dataset {
|
|
|
|
let mut dataset = Dataset{
|
|
|
|
trajectories: Vec::new()
|
|
|
|
};
|
|
|
|
|
|
|
|
let node_idx: Vec<_> = net.get_node_indices().collect();
|
|
|
|
for _ in 0..n_trajectories {
|
|
|
|
let t = 0.0;
|
|
|
|
let mut time: Vec<f64> = Vec::new();
|
|
|
|
let mut events: Vec<Vec<u32>> = Vec::new();
|
|
|
|
let mut current_state: Vec<u32> = node_idx.iter().map(|x| {
|
|
|
|
match net.get_node_weight(&x).get_params() {
|
|
|
|
node::NodeType::DiscreteStatesContinousTime(params) =>
|
|
|
|
params.get_random_state_uniform()
|
|
|
|
}
|
|
|
|
}).collect();
|
|
|
|
let next_transitions: Vec<Option<f64>> = (0..node_idx.len()).map(|_| Option::None).collect();
|
|
|
|
events.push(current_state.clone());
|
|
|
|
time.push(t.clone());
|
|
|
|
while t < t_end {
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
dataset
|
|
|
|
}
|