Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
322 lines
11 KiB
322 lines
11 KiB
"""
|
|
GUI progressbar decorator for iterators.
|
|
Includes a default `range` iterator printing to `stderr`.
|
|
|
|
Usage:
|
|
>>> from tqdm.gui import trange, tqdm
|
|
>>> for i in trange(10):
|
|
... ...
|
|
"""
|
|
# future division is important to divide integers and get as
|
|
# a result precise floating numbers (instead of truncated int)
|
|
from __future__ import division, absolute_import
|
|
# import compatibility functions and utilities
|
|
from .utils import _range
|
|
# to inherit from the tqdm class
|
|
from .std import tqdm as std_tqdm
|
|
from .std import TqdmExperimentalWarning
|
|
from warnings import warn
|
|
|
|
|
|
__author__ = {"github.com/": ["casperdcl", "lrq3000"]}
|
|
__all__ = ['tqdm_gui', 'tgrange', 'tqdm', 'trange']
|
|
|
|
|
|
class tqdm_gui(std_tqdm): # pragma: no cover
|
|
"""
|
|
Experimental GUI version of tqdm!
|
|
"""
|
|
|
|
# TODO: @classmethod: write() on GUI?
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
import matplotlib as mpl
|
|
import matplotlib.pyplot as plt
|
|
from collections import deque
|
|
kwargs['gui'] = True
|
|
|
|
super(tqdm_gui, self).__init__(*args, **kwargs)
|
|
|
|
# Initialize the GUI display
|
|
if self.disable or not kwargs['gui']:
|
|
return
|
|
|
|
warn('GUI is experimental/alpha', TqdmExperimentalWarning, stacklevel=2)
|
|
self.mpl = mpl
|
|
self.plt = plt
|
|
self.sp = None
|
|
|
|
# Remember if external environment uses toolbars
|
|
self.toolbar = self.mpl.rcParams['toolbar']
|
|
self.mpl.rcParams['toolbar'] = 'None'
|
|
|
|
self.mininterval = max(self.mininterval, 0.5)
|
|
self.fig, ax = plt.subplots(figsize=(9, 2.2))
|
|
# self.fig.subplots_adjust(bottom=0.2)
|
|
total = self.__len__() # avoids TypeError on None #971
|
|
if total is not None:
|
|
self.xdata = []
|
|
self.ydata = []
|
|
self.zdata = []
|
|
else:
|
|
self.xdata = deque([])
|
|
self.ydata = deque([])
|
|
self.zdata = deque([])
|
|
self.line1, = ax.plot(self.xdata, self.ydata, color='b')
|
|
self.line2, = ax.plot(self.xdata, self.zdata, color='k')
|
|
ax.set_ylim(0, 0.001)
|
|
if total is not None:
|
|
ax.set_xlim(0, 100)
|
|
ax.set_xlabel('percent')
|
|
self.fig.legend((self.line1, self.line2), ('cur', 'est'),
|
|
loc='center right')
|
|
# progressbar
|
|
self.hspan = plt.axhspan(0, 0.001,
|
|
xmin=0, xmax=0, color='g')
|
|
else:
|
|
# ax.set_xlim(-60, 0)
|
|
ax.set_xlim(0, 60)
|
|
ax.invert_xaxis()
|
|
ax.set_xlabel('seconds')
|
|
ax.legend(('cur', 'est'), loc='lower left')
|
|
ax.grid()
|
|
# ax.set_xlabel('seconds')
|
|
ax.set_ylabel((self.unit if self.unit else 'it') + '/s')
|
|
if self.unit_scale:
|
|
plt.ticklabel_format(style='sci', axis='y',
|
|
scilimits=(0, 0))
|
|
ax.yaxis.get_offset_text().set_x(-0.15)
|
|
|
|
# Remember if external environment is interactive
|
|
self.wasion = plt.isinteractive()
|
|
plt.ion()
|
|
self.ax = ax
|
|
|
|
def __iter__(self):
|
|
# TODO: somehow allow the following:
|
|
# if not self.gui:
|
|
# return super(tqdm_gui, self).__iter__()
|
|
iterable = self.iterable
|
|
if self.disable:
|
|
for obj in iterable:
|
|
yield obj
|
|
return
|
|
|
|
# ncols = self.ncols
|
|
mininterval = self.mininterval
|
|
maxinterval = self.maxinterval
|
|
miniters = self.miniters
|
|
dynamic_miniters = self.dynamic_miniters
|
|
last_print_t = self.last_print_t
|
|
last_print_n = self.last_print_n
|
|
n = self.n
|
|
# dynamic_ncols = self.dynamic_ncols
|
|
smoothing = self.smoothing
|
|
avg_time = self.avg_time
|
|
time = self._time
|
|
|
|
for obj in iterable:
|
|
yield obj
|
|
# Update and possibly print the progressbar.
|
|
# Note: does not call self.update(1) for speed optimisation.
|
|
n += 1
|
|
# check counter first to avoid calls to time()
|
|
if n - last_print_n >= self.miniters:
|
|
miniters = self.miniters # watch monitoring thread changes
|
|
delta_t = time() - last_print_t
|
|
if delta_t >= mininterval:
|
|
cur_t = time()
|
|
delta_it = n - last_print_n
|
|
# EMA (not just overall average)
|
|
if smoothing and delta_t and delta_it:
|
|
rate = delta_t / delta_it
|
|
avg_time = self.ema(rate, avg_time, smoothing)
|
|
self.avg_time = avg_time
|
|
|
|
self.n = n
|
|
self.display()
|
|
|
|
# If no `miniters` was specified, adjust automatically
|
|
# to the max iteration rate seen so far between 2 prints
|
|
if dynamic_miniters:
|
|
if maxinterval and delta_t >= maxinterval:
|
|
# Adjust miniters to time interval by rule of 3
|
|
if mininterval:
|
|
# Set miniters to correspond to mininterval
|
|
miniters = delta_it * mininterval / delta_t
|
|
else:
|
|
# Set miniters to correspond to maxinterval
|
|
miniters = delta_it * maxinterval / delta_t
|
|
elif smoothing:
|
|
# EMA-weight miniters to converge
|
|
# towards the timeframe of mininterval
|
|
rate = delta_it
|
|
if mininterval and delta_t:
|
|
rate *= mininterval / delta_t
|
|
miniters = self.ema(rate, miniters, smoothing)
|
|
else:
|
|
# Maximum nb of iterations between 2 prints
|
|
miniters = max(miniters, delta_it)
|
|
|
|
# Store old values for next call
|
|
self.n = self.last_print_n = last_print_n = n
|
|
self.last_print_t = last_print_t = cur_t
|
|
self.miniters = miniters
|
|
|
|
# Closing the progress bar.
|
|
# Update some internal variables for close().
|
|
self.last_print_n = last_print_n
|
|
self.n = n
|
|
self.miniters = miniters
|
|
self.close()
|
|
|
|
def update(self, n=1):
|
|
# if not self.gui:
|
|
# return super(tqdm_gui, self).close()
|
|
if self.disable:
|
|
return
|
|
|
|
if n < 0:
|
|
self.last_print_n += n # for auto-refresh logic to work
|
|
self.n += n
|
|
|
|
# check counter first to reduce calls to time()
|
|
if self.n - self.last_print_n >= self.miniters:
|
|
delta_t = self._time() - self.last_print_t
|
|
if delta_t >= self.mininterval:
|
|
cur_t = self._time()
|
|
delta_it = self.n - self.last_print_n # >= n
|
|
# elapsed = cur_t - self.start_t
|
|
# EMA (not just overall average)
|
|
if self.smoothing and delta_t and delta_it:
|
|
rate = delta_t / delta_it
|
|
self.avg_time = self.ema(
|
|
rate, self.avg_time, self.smoothing)
|
|
|
|
self.display()
|
|
|
|
# If no `miniters` was specified, adjust automatically to the
|
|
# maximum iteration rate seen so far between two prints.
|
|
# e.g.: After running `tqdm.update(5)`, subsequent
|
|
# calls to `tqdm.update()` will only cause an update after
|
|
# at least 5 more iterations.
|
|
if self.dynamic_miniters:
|
|
if self.maxinterval and delta_t >= self.maxinterval:
|
|
if self.mininterval:
|
|
self.miniters = delta_it * self.mininterval \
|
|
/ delta_t
|
|
else:
|
|
self.miniters = delta_it * self.maxinterval \
|
|
/ delta_t
|
|
elif self.smoothing:
|
|
self.miniters = self.smoothing * delta_it * \
|
|
(self.mininterval / delta_t
|
|
if self.mininterval and delta_t
|
|
else 1) + \
|
|
(1 - self.smoothing) * self.miniters
|
|
else:
|
|
self.miniters = max(self.miniters, delta_it)
|
|
|
|
# Store old values for next call
|
|
self.last_print_n = self.n
|
|
self.last_print_t = cur_t
|
|
return True
|
|
|
|
def close(self):
|
|
# if not self.gui:
|
|
# return super(tqdm_gui, self).close()
|
|
if self.disable:
|
|
return
|
|
|
|
self.disable = True
|
|
|
|
with self.get_lock():
|
|
self._instances.remove(self)
|
|
|
|
# Restore toolbars
|
|
self.mpl.rcParams['toolbar'] = self.toolbar
|
|
# Return to non-interactive mode
|
|
if not self.wasion:
|
|
self.plt.ioff()
|
|
if not self.leave:
|
|
self.plt.close(self.fig)
|
|
|
|
def display(self):
|
|
n = self.n
|
|
cur_t = self._time()
|
|
elapsed = cur_t - self.start_t
|
|
delta_it = n - self.last_print_n
|
|
delta_t = cur_t - self.last_print_t
|
|
|
|
# Inline due to multiple calls
|
|
total = self.total
|
|
xdata = self.xdata
|
|
ydata = self.ydata
|
|
zdata = self.zdata
|
|
ax = self.ax
|
|
line1 = self.line1
|
|
line2 = self.line2
|
|
# instantaneous rate
|
|
y = delta_it / delta_t
|
|
# overall rate
|
|
z = n / elapsed
|
|
# update line data
|
|
xdata.append(n * 100.0 / total if total else cur_t)
|
|
ydata.append(y)
|
|
zdata.append(z)
|
|
|
|
# Discard old values
|
|
# xmin, xmax = ax.get_xlim()
|
|
# if (not total) and elapsed > xmin * 1.1:
|
|
if (not total) and elapsed > 66:
|
|
xdata.popleft()
|
|
ydata.popleft()
|
|
zdata.popleft()
|
|
|
|
ymin, ymax = ax.get_ylim()
|
|
if y > ymax or z > ymax:
|
|
ymax = 1.1 * y
|
|
ax.set_ylim(ymin, ymax)
|
|
ax.figure.canvas.draw()
|
|
|
|
if total:
|
|
line1.set_data(xdata, ydata)
|
|
line2.set_data(xdata, zdata)
|
|
try:
|
|
poly_lims = self.hspan.get_xy()
|
|
except AttributeError:
|
|
self.hspan = self.plt.axhspan(
|
|
0, 0.001, xmin=0, xmax=0, color='g')
|
|
poly_lims = self.hspan.get_xy()
|
|
poly_lims[0, 1] = ymin
|
|
poly_lims[1, 1] = ymax
|
|
poly_lims[2] = [n / total, ymax]
|
|
poly_lims[3] = [poly_lims[2, 0], ymin]
|
|
if len(poly_lims) > 4:
|
|
poly_lims[4, 1] = ymin
|
|
self.hspan.set_xy(poly_lims)
|
|
else:
|
|
t_ago = [cur_t - i for i in xdata]
|
|
line1.set_data(t_ago, ydata)
|
|
line2.set_data(t_ago, zdata)
|
|
|
|
ax.set_title(self.format_meter(
|
|
n, total, elapsed, 0,
|
|
self.desc, self.ascii, self.unit, self.unit_scale,
|
|
1 / self.avg_time if self.avg_time else None, self.bar_format,
|
|
self.postfix, self.unit_divisor),
|
|
fontname="DejaVu Sans Mono", fontsize=11)
|
|
self.plt.pause(1e-9)
|
|
|
|
|
|
def tgrange(*args, **kwargs):
|
|
"""
|
|
A shortcut for `tqdm.gui.tqdm(xrange(*args), **kwargs)`.
|
|
On Python3+, `range` is used instead of `xrange`.
|
|
"""
|
|
return tqdm_gui(_range(*args), **kwargs)
|
|
|
|
|
|
# Aliases
|
|
tqdm = tqdm_gui
|
|
trange = tgrange
|
|
|