1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/tqdm/gui.py

323 lines
11 KiB

"""
GUI progressbar decorator for iterators.
Includes a default `range` iterator printing to `stderr`.
Usage:
>>> from tqdm.gui import trange, tqdm
>>> for i in trange(10):
... ...
"""
# future division is important to divide integers and get as
# a result precise floating numbers (instead of truncated int)
from __future__ import division, absolute_import
# import compatibility functions and utilities
from .utils import _range
# to inherit from the tqdm class
from .std import tqdm as std_tqdm
from .std import TqdmExperimentalWarning
from warnings import warn
__author__ = {"github.com/": ["casperdcl", "lrq3000"]}
__all__ = ['tqdm_gui', 'tgrange', 'tqdm', 'trange']
class tqdm_gui(std_tqdm): # pragma: no cover
"""
Experimental GUI version of tqdm!
"""
# TODO: @classmethod: write() on GUI?
def __init__(self, *args, **kwargs):
import matplotlib as mpl
import matplotlib.pyplot as plt
from collections import deque
kwargs['gui'] = True
super(tqdm_gui, self).__init__(*args, **kwargs)
# Initialize the GUI display
if self.disable or not kwargs['gui']:
return
warn('GUI is experimental/alpha', TqdmExperimentalWarning, stacklevel=2)
self.mpl = mpl
self.plt = plt
self.sp = None
# Remember if external environment uses toolbars
self.toolbar = self.mpl.rcParams['toolbar']
self.mpl.rcParams['toolbar'] = 'None'
self.mininterval = max(self.mininterval, 0.5)
self.fig, ax = plt.subplots(figsize=(9, 2.2))
# self.fig.subplots_adjust(bottom=0.2)
total = self.__len__() # avoids TypeError on None #971
if total is not None:
self.xdata = []
self.ydata = []
self.zdata = []
else:
self.xdata = deque([])
self.ydata = deque([])
self.zdata = deque([])
self.line1, = ax.plot(self.xdata, self.ydata, color='b')
self.line2, = ax.plot(self.xdata, self.zdata, color='k')
ax.set_ylim(0, 0.001)
if total is not None:
ax.set_xlim(0, 100)
ax.set_xlabel('percent')
self.fig.legend((self.line1, self.line2), ('cur', 'est'),
loc='center right')
# progressbar
self.hspan = plt.axhspan(0, 0.001,
xmin=0, xmax=0, color='g')
else:
# ax.set_xlim(-60, 0)
ax.set_xlim(0, 60)
ax.invert_xaxis()
ax.set_xlabel('seconds')
ax.legend(('cur', 'est'), loc='lower left')
ax.grid()
# ax.set_xlabel('seconds')
ax.set_ylabel((self.unit if self.unit else 'it') + '/s')
if self.unit_scale:
plt.ticklabel_format(style='sci', axis='y',
scilimits=(0, 0))
ax.yaxis.get_offset_text().set_x(-0.15)
# Remember if external environment is interactive
self.wasion = plt.isinteractive()
plt.ion()
self.ax = ax
def __iter__(self):
# TODO: somehow allow the following:
# if not self.gui:
# return super(tqdm_gui, self).__iter__()
iterable = self.iterable
if self.disable:
for obj in iterable:
yield obj
return
# ncols = self.ncols
mininterval = self.mininterval
maxinterval = self.maxinterval
miniters = self.miniters
dynamic_miniters = self.dynamic_miniters
last_print_t = self.last_print_t
last_print_n = self.last_print_n
n = self.n
# dynamic_ncols = self.dynamic_ncols
smoothing = self.smoothing
avg_time = self.avg_time
time = self._time
for obj in iterable:
yield obj
# Update and possibly print the progressbar.
# Note: does not call self.update(1) for speed optimisation.
n += 1
# check counter first to avoid calls to time()
if n - last_print_n >= self.miniters:
miniters = self.miniters # watch monitoring thread changes
delta_t = time() - last_print_t
if delta_t >= mininterval:
cur_t = time()
delta_it = n - last_print_n
# EMA (not just overall average)
if smoothing and delta_t and delta_it:
rate = delta_t / delta_it
avg_time = self.ema(rate, avg_time, smoothing)
self.avg_time = avg_time
self.n = n
self.display()
# If no `miniters` was specified, adjust automatically
# to the max iteration rate seen so far between 2 prints
if dynamic_miniters:
if maxinterval and delta_t >= maxinterval:
# Adjust miniters to time interval by rule of 3
if mininterval:
# Set miniters to correspond to mininterval
miniters = delta_it * mininterval / delta_t
else:
# Set miniters to correspond to maxinterval
miniters = delta_it * maxinterval / delta_t
elif smoothing:
# EMA-weight miniters to converge
# towards the timeframe of mininterval
rate = delta_it
if mininterval and delta_t:
rate *= mininterval / delta_t
miniters = self.ema(rate, miniters, smoothing)
else:
# Maximum nb of iterations between 2 prints
miniters = max(miniters, delta_it)
# Store old values for next call
self.n = self.last_print_n = last_print_n = n
self.last_print_t = last_print_t = cur_t
self.miniters = miniters
# Closing the progress bar.
# Update some internal variables for close().
self.last_print_n = last_print_n
self.n = n
self.miniters = miniters
self.close()
def update(self, n=1):
# if not self.gui:
# return super(tqdm_gui, self).close()
if self.disable:
return
if n < 0:
self.last_print_n += n # for auto-refresh logic to work
self.n += n
# check counter first to reduce calls to time()
if self.n - self.last_print_n >= self.miniters:
delta_t = self._time() - self.last_print_t
if delta_t >= self.mininterval:
cur_t = self._time()
delta_it = self.n - self.last_print_n # >= n
# elapsed = cur_t - self.start_t
# EMA (not just overall average)
if self.smoothing and delta_t and delta_it:
rate = delta_t / delta_it
self.avg_time = self.ema(
rate, self.avg_time, self.smoothing)
self.display()
# If no `miniters` was specified, adjust automatically to the
# maximum iteration rate seen so far between two prints.
# e.g.: After running `tqdm.update(5)`, subsequent
# calls to `tqdm.update()` will only cause an update after
# at least 5 more iterations.
if self.dynamic_miniters:
if self.maxinterval and delta_t >= self.maxinterval:
if self.mininterval:
self.miniters = delta_it * self.mininterval \
/ delta_t
else:
self.miniters = delta_it * self.maxinterval \
/ delta_t
elif self.smoothing:
self.miniters = self.smoothing * delta_it * \
(self.mininterval / delta_t
if self.mininterval and delta_t
else 1) + \
(1 - self.smoothing) * self.miniters
else:
self.miniters = max(self.miniters, delta_it)
# Store old values for next call
self.last_print_n = self.n
self.last_print_t = cur_t
return True
def close(self):
# if not self.gui:
# return super(tqdm_gui, self).close()
if self.disable:
return
self.disable = True
with self.get_lock():
self._instances.remove(self)
# Restore toolbars
self.mpl.rcParams['toolbar'] = self.toolbar
# Return to non-interactive mode
if not self.wasion:
self.plt.ioff()
if not self.leave:
self.plt.close(self.fig)
def display(self):
n = self.n
cur_t = self._time()
elapsed = cur_t - self.start_t
delta_it = n - self.last_print_n
delta_t = cur_t - self.last_print_t
# Inline due to multiple calls
total = self.total
xdata = self.xdata
ydata = self.ydata
zdata = self.zdata
ax = self.ax
line1 = self.line1
line2 = self.line2
# instantaneous rate
y = delta_it / delta_t
# overall rate
z = n / elapsed
# update line data
xdata.append(n * 100.0 / total if total else cur_t)
ydata.append(y)
zdata.append(z)
# Discard old values
# xmin, xmax = ax.get_xlim()
# if (not total) and elapsed > xmin * 1.1:
if (not total) and elapsed > 66:
xdata.popleft()
ydata.popleft()
zdata.popleft()
ymin, ymax = ax.get_ylim()
if y > ymax or z > ymax:
ymax = 1.1 * y
ax.set_ylim(ymin, ymax)
ax.figure.canvas.draw()
if total:
line1.set_data(xdata, ydata)
line2.set_data(xdata, zdata)
try:
poly_lims = self.hspan.get_xy()
except AttributeError:
self.hspan = self.plt.axhspan(
0, 0.001, xmin=0, xmax=0, color='g')
poly_lims = self.hspan.get_xy()
poly_lims[0, 1] = ymin
poly_lims[1, 1] = ymax
poly_lims[2] = [n / total, ymax]
poly_lims[3] = [poly_lims[2, 0], ymin]
if len(poly_lims) > 4:
poly_lims[4, 1] = ymin
self.hspan.set_xy(poly_lims)
else:
t_ago = [cur_t - i for i in xdata]
line1.set_data(t_ago, ydata)
line2.set_data(t_ago, zdata)
ax.set_title(self.format_meter(
n, total, elapsed, 0,
self.desc, self.ascii, self.unit, self.unit_scale,
1 / self.avg_time if self.avg_time else None, self.bar_format,
self.postfix, self.unit_divisor),
fontname="DejaVu Sans Mono", fontsize=11)
self.plt.pause(1e-9)
def tgrange(*args, **kwargs):
"""
A shortcut for `tqdm.gui.tqdm(xrange(*args), **kwargs)`.
On Python3+, `range` is used instead of `xrange`.
"""
return tqdm_gui(_range(*args), **kwargs)
# Aliases
tqdm = tqdm_gui
trange = tgrange