1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/extension/base/ops.py

181 lines
6.3 KiB

from typing import Optional, Type
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.core import ops
from .base import BaseExtensionTests
class BaseOpsUtil(BaseExtensionTests):
def get_op_from_name(self, op_name):
return tm.get_op_from_name(op_name)
def check_opname(self, s, op_name, other, exc=Exception):
op = self.get_op_from_name(op_name)
self._check_op(s, op, other, op_name, exc)
def _check_op(self, s, op, other, op_name, exc=NotImplementedError):
if exc is None:
result = op(s, other)
if isinstance(s, pd.DataFrame):
if len(s.columns) != 1:
raise NotImplementedError
expected = s.iloc[:, 0].combine(other, op).to_frame()
self.assert_frame_equal(result, expected)
else:
expected = s.combine(other, op)
self.assert_series_equal(result, expected)
else:
with pytest.raises(exc):
op(s, other)
def _check_divmod_op(self, s, op, other, exc=Exception):
# divmod has multiple return values, so check separately
if exc is None:
result_div, result_mod = op(s, other)
if op is divmod:
expected_div, expected_mod = s // other, s % other
else:
expected_div, expected_mod = other // s, other % s
self.assert_series_equal(result_div, expected_div)
self.assert_series_equal(result_mod, expected_mod)
else:
with pytest.raises(exc):
divmod(s, other)
class BaseArithmeticOpsTests(BaseOpsUtil):
"""
Various Series and DataFrame arithmetic ops methods.
Subclasses supporting various ops should set the class variables
to indicate that they support ops of that kind
* series_scalar_exc = TypeError
* frame_scalar_exc = TypeError
* series_array_exc = TypeError
* divmod_exc = TypeError
"""
series_scalar_exc: Optional[Type[TypeError]] = TypeError
frame_scalar_exc: Optional[Type[TypeError]] = TypeError
series_array_exc: Optional[Type[TypeError]] = TypeError
divmod_exc: Optional[Type[TypeError]] = TypeError
def test_arith_series_with_scalar(self, data, all_arithmetic_operators):
# series & scalar
op_name = all_arithmetic_operators
s = pd.Series(data)
self.check_opname(s, op_name, s.iloc[0], exc=self.series_scalar_exc)
@pytest.mark.xfail(run=False, reason="_reduce needs implementation")
def test_arith_frame_with_scalar(self, data, all_arithmetic_operators):
# frame & scalar
op_name = all_arithmetic_operators
df = pd.DataFrame({"A": data})
self.check_opname(df, op_name, data[0], exc=self.frame_scalar_exc)
def test_arith_series_with_array(self, data, all_arithmetic_operators):
# ndarray & other series
op_name = all_arithmetic_operators
s = pd.Series(data)
self.check_opname(
s, op_name, pd.Series([s.iloc[0]] * len(s)), exc=self.series_array_exc
)
def test_divmod(self, data):
s = pd.Series(data)
self._check_divmod_op(s, divmod, 1, exc=self.divmod_exc)
self._check_divmod_op(1, ops.rdivmod, s, exc=self.divmod_exc)
def test_divmod_series_array(self, data, data_for_twos):
s = pd.Series(data)
self._check_divmod_op(s, divmod, data)
other = data_for_twos
self._check_divmod_op(other, ops.rdivmod, s)
other = pd.Series(other)
self._check_divmod_op(other, ops.rdivmod, s)
def test_add_series_with_extension_array(self, data):
s = pd.Series(data)
result = s + data
expected = pd.Series(data + data)
self.assert_series_equal(result, expected)
def test_error(self, data, all_arithmetic_operators):
# invalid ops
op_name = all_arithmetic_operators
with pytest.raises(AttributeError):
getattr(data, op_name)
def test_direct_arith_with_series_returns_not_implemented(self, data):
# EAs should return NotImplemented for ops with Series.
# Pandas takes care of unboxing the series and calling the EA's op.
other = pd.Series(data)
if hasattr(data, "__add__"):
result = data.__add__(other)
assert result is NotImplemented
else:
raise pytest.skip(f"{type(data).__name__} does not implement add")
class BaseComparisonOpsTests(BaseOpsUtil):
"""Various Series and DataFrame comparison ops methods."""
def _compare_other(self, s, data, op_name, other):
op = self.get_op_from_name(op_name)
if op_name == "__eq__":
assert not op(s, other).all()
elif op_name == "__ne__":
assert op(s, other).all()
else:
# array
assert getattr(data, op_name)(other) is NotImplemented
# series
s = pd.Series(data)
with pytest.raises(TypeError):
op(s, other)
def test_compare_scalar(self, data, all_compare_operators):
op_name = all_compare_operators
s = pd.Series(data)
self._compare_other(s, data, op_name, 0)
def test_compare_array(self, data, all_compare_operators):
op_name = all_compare_operators
s = pd.Series(data)
other = pd.Series([data[0]] * len(data))
self._compare_other(s, data, op_name, other)
def test_direct_arith_with_series_returns_not_implemented(self, data):
# EAs should return NotImplemented for ops with Series.
# Pandas takes care of unboxing the series and calling the EA's op.
other = pd.Series(data)
if hasattr(data, "__eq__"):
result = data.__eq__(other)
assert result is NotImplemented
else:
raise pytest.skip(f"{type(data).__name__} does not implement __eq__")
if hasattr(data, "__ne__"):
result = data.__ne__(other)
assert result is NotImplemented
else:
raise pytest.skip(f"{type(data).__name__} does not implement __ne__")
class BaseUnaryOpsTests(BaseOpsUtil):
def test_invert(self, data):
s = pd.Series(data, name="name")
result = ~s
expected = pd.Series(~data, name="name")
self.assert_series_equal(result, expected)