Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
182 lines
6.3 KiB
182 lines
6.3 KiB
4 years ago
|
from typing import Optional, Type
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
import pandas._testing as tm
|
||
|
from pandas.core import ops
|
||
|
|
||
|
from .base import BaseExtensionTests
|
||
|
|
||
|
|
||
|
class BaseOpsUtil(BaseExtensionTests):
|
||
|
def get_op_from_name(self, op_name):
|
||
|
return tm.get_op_from_name(op_name)
|
||
|
|
||
|
def check_opname(self, s, op_name, other, exc=Exception):
|
||
|
op = self.get_op_from_name(op_name)
|
||
|
|
||
|
self._check_op(s, op, other, op_name, exc)
|
||
|
|
||
|
def _check_op(self, s, op, other, op_name, exc=NotImplementedError):
|
||
|
if exc is None:
|
||
|
result = op(s, other)
|
||
|
if isinstance(s, pd.DataFrame):
|
||
|
if len(s.columns) != 1:
|
||
|
raise NotImplementedError
|
||
|
expected = s.iloc[:, 0].combine(other, op).to_frame()
|
||
|
self.assert_frame_equal(result, expected)
|
||
|
else:
|
||
|
expected = s.combine(other, op)
|
||
|
self.assert_series_equal(result, expected)
|
||
|
else:
|
||
|
with pytest.raises(exc):
|
||
|
op(s, other)
|
||
|
|
||
|
def _check_divmod_op(self, s, op, other, exc=Exception):
|
||
|
# divmod has multiple return values, so check separately
|
||
|
if exc is None:
|
||
|
result_div, result_mod = op(s, other)
|
||
|
if op is divmod:
|
||
|
expected_div, expected_mod = s // other, s % other
|
||
|
else:
|
||
|
expected_div, expected_mod = other // s, other % s
|
||
|
self.assert_series_equal(result_div, expected_div)
|
||
|
self.assert_series_equal(result_mod, expected_mod)
|
||
|
else:
|
||
|
with pytest.raises(exc):
|
||
|
divmod(s, other)
|
||
|
|
||
|
|
||
|
class BaseArithmeticOpsTests(BaseOpsUtil):
|
||
|
"""
|
||
|
Various Series and DataFrame arithmetic ops methods.
|
||
|
|
||
|
Subclasses supporting various ops should set the class variables
|
||
|
to indicate that they support ops of that kind
|
||
|
|
||
|
* series_scalar_exc = TypeError
|
||
|
* frame_scalar_exc = TypeError
|
||
|
* series_array_exc = TypeError
|
||
|
* divmod_exc = TypeError
|
||
|
"""
|
||
|
|
||
|
series_scalar_exc: Optional[Type[TypeError]] = TypeError
|
||
|
frame_scalar_exc: Optional[Type[TypeError]] = TypeError
|
||
|
series_array_exc: Optional[Type[TypeError]] = TypeError
|
||
|
divmod_exc: Optional[Type[TypeError]] = TypeError
|
||
|
|
||
|
def test_arith_series_with_scalar(self, data, all_arithmetic_operators):
|
||
|
# series & scalar
|
||
|
op_name = all_arithmetic_operators
|
||
|
s = pd.Series(data)
|
||
|
self.check_opname(s, op_name, s.iloc[0], exc=self.series_scalar_exc)
|
||
|
|
||
|
@pytest.mark.xfail(run=False, reason="_reduce needs implementation")
|
||
|
def test_arith_frame_with_scalar(self, data, all_arithmetic_operators):
|
||
|
# frame & scalar
|
||
|
op_name = all_arithmetic_operators
|
||
|
df = pd.DataFrame({"A": data})
|
||
|
self.check_opname(df, op_name, data[0], exc=self.frame_scalar_exc)
|
||
|
|
||
|
def test_arith_series_with_array(self, data, all_arithmetic_operators):
|
||
|
# ndarray & other series
|
||
|
op_name = all_arithmetic_operators
|
||
|
s = pd.Series(data)
|
||
|
self.check_opname(
|
||
|
s, op_name, pd.Series([s.iloc[0]] * len(s)), exc=self.series_array_exc
|
||
|
)
|
||
|
|
||
|
def test_divmod(self, data):
|
||
|
s = pd.Series(data)
|
||
|
self._check_divmod_op(s, divmod, 1, exc=self.divmod_exc)
|
||
|
self._check_divmod_op(1, ops.rdivmod, s, exc=self.divmod_exc)
|
||
|
|
||
|
def test_divmod_series_array(self, data, data_for_twos):
|
||
|
s = pd.Series(data)
|
||
|
self._check_divmod_op(s, divmod, data)
|
||
|
|
||
|
other = data_for_twos
|
||
|
self._check_divmod_op(other, ops.rdivmod, s)
|
||
|
|
||
|
other = pd.Series(other)
|
||
|
self._check_divmod_op(other, ops.rdivmod, s)
|
||
|
|
||
|
def test_add_series_with_extension_array(self, data):
|
||
|
s = pd.Series(data)
|
||
|
result = s + data
|
||
|
expected = pd.Series(data + data)
|
||
|
self.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_error(self, data, all_arithmetic_operators):
|
||
|
# invalid ops
|
||
|
op_name = all_arithmetic_operators
|
||
|
with pytest.raises(AttributeError):
|
||
|
getattr(data, op_name)
|
||
|
|
||
|
def test_direct_arith_with_series_returns_not_implemented(self, data):
|
||
|
# EAs should return NotImplemented for ops with Series.
|
||
|
# Pandas takes care of unboxing the series and calling the EA's op.
|
||
|
other = pd.Series(data)
|
||
|
if hasattr(data, "__add__"):
|
||
|
result = data.__add__(other)
|
||
|
assert result is NotImplemented
|
||
|
else:
|
||
|
raise pytest.skip(f"{type(data).__name__} does not implement add")
|
||
|
|
||
|
|
||
|
class BaseComparisonOpsTests(BaseOpsUtil):
|
||
|
"""Various Series and DataFrame comparison ops methods."""
|
||
|
|
||
|
def _compare_other(self, s, data, op_name, other):
|
||
|
op = self.get_op_from_name(op_name)
|
||
|
if op_name == "__eq__":
|
||
|
assert not op(s, other).all()
|
||
|
elif op_name == "__ne__":
|
||
|
assert op(s, other).all()
|
||
|
|
||
|
else:
|
||
|
|
||
|
# array
|
||
|
assert getattr(data, op_name)(other) is NotImplemented
|
||
|
|
||
|
# series
|
||
|
s = pd.Series(data)
|
||
|
with pytest.raises(TypeError):
|
||
|
op(s, other)
|
||
|
|
||
|
def test_compare_scalar(self, data, all_compare_operators):
|
||
|
op_name = all_compare_operators
|
||
|
s = pd.Series(data)
|
||
|
self._compare_other(s, data, op_name, 0)
|
||
|
|
||
|
def test_compare_array(self, data, all_compare_operators):
|
||
|
op_name = all_compare_operators
|
||
|
s = pd.Series(data)
|
||
|
other = pd.Series([data[0]] * len(data))
|
||
|
self._compare_other(s, data, op_name, other)
|
||
|
|
||
|
def test_direct_arith_with_series_returns_not_implemented(self, data):
|
||
|
# EAs should return NotImplemented for ops with Series.
|
||
|
# Pandas takes care of unboxing the series and calling the EA's op.
|
||
|
other = pd.Series(data)
|
||
|
if hasattr(data, "__eq__"):
|
||
|
result = data.__eq__(other)
|
||
|
assert result is NotImplemented
|
||
|
else:
|
||
|
raise pytest.skip(f"{type(data).__name__} does not implement __eq__")
|
||
|
|
||
|
if hasattr(data, "__ne__"):
|
||
|
result = data.__ne__(other)
|
||
|
assert result is NotImplemented
|
||
|
else:
|
||
|
raise pytest.skip(f"{type(data).__name__} does not implement __ne__")
|
||
|
|
||
|
|
||
|
class BaseUnaryOpsTests(BaseOpsUtil):
|
||
|
def test_invert(self, data):
|
||
|
s = pd.Series(data, name="name")
|
||
|
result = ~s
|
||
|
expected = pd.Series(~data, name="name")
|
||
|
self.assert_series_equal(result, expected)
|