1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/classes/parameters_estimator.py

117 lines
6.4 KiB

import os
from line_profiler import LineProfiler
import numba as nb
import numpy as np
import network_graph as ng
import sample_path as sp
import sets_of_cims_container as acims
class ParametersEstimator:
def __init__(self, sample_path, net_graph):
self.sample_path = sample_path
self.net_graph = net_graph
self.sets_of_cims_struct = None
def init_sets_cims_container(self):
self.sets_of_cims_struct = acims.SetsOfCimsContainer(self.net_graph.get_nodes(),
self.net_graph.get_states_number_of_all_nodes_sorted(),
self.net_graph.get_ordered_by_indx_parents_values_for_all_nodes())
def compute_parameters(self):
#print(self.net_graph.get_nodes())
#print(self.amalgamated_cims_struct.sets_of_cims)
#enumerate(zip(self.net_graph.get_nodes(), self.amalgamated_cims_struct.sets_of_cims))
for indx, aggr in enumerate(zip(self.net_graph.get_nodes(), self.sets_of_cims_struct.sets_of_cims)):
#print(self.net_graph.time_filtering[indx])
#print(self.net_graph.time_scalar_indexing_strucure[indx])
self.compute_state_res_time_for_node(self.net_graph.get_node_indx(aggr[0]), self.sample_path.trajectories.times,
self.sample_path.trajectories.trajectory,
self.net_graph.time_filtering[indx],
self.net_graph.time_scalar_indexing_strucure[indx],
aggr[1].state_residence_times)
#print(self.net_graph.transition_filtering[indx])
#print(self.net_graph.transition_scalar_indexing_structure[indx])
self.compute_state_transitions_for_a_node(self.net_graph.get_node_indx(aggr[0]),
self.sample_path.trajectories.complete_trajectory,
self.net_graph.transition_filtering[indx],
self.net_graph.transition_scalar_indexing_structure[indx],
aggr[1].transition_matrices)
aggr[1].build_cims(aggr[1].state_residence_times, aggr[1].transition_matrices)
def compute_parameters_for_node(self, node_id):
pos_index = self.net_graph.graph_struct.get_positional_node_indx(node_id)
node_indx = self.net_graph.get_node_indx(node_id)
#print("Nodes", self.net_graph.get_nodes())
self.compute_state_res_time_for_node(node_indx, self.sample_path.trajectories.times,
self.sample_path.trajectories.trajectory,
self.net_graph.time_filtering[pos_index],
self.net_graph.time_scalar_indexing_strucure[pos_index],
self.sets_of_cims_struct.sets_of_cims[pos_index].state_residence_times)
# print(self.net_graph.transition_filtering[indx])
# print(self.net_graph.transition_scalar_indexing_structure[indx])
self.compute_state_transitions_for_a_node(node_indx,
self.sample_path.trajectories.complete_trajectory,
self.net_graph.transition_filtering[pos_index],
self.net_graph.transition_scalar_indexing_structure[pos_index],
self.sets_of_cims_struct.sets_of_cims[pos_index].transition_matrices)
self.sets_of_cims_struct.sets_of_cims[pos_index].build_cims(
self.sets_of_cims_struct.sets_of_cims[pos_index].state_residence_times,
self.sets_of_cims_struct.sets_of_cims[pos_index].transition_matrices)
def compute_state_res_time_for_node(self, node_indx, times, trajectory, cols_filter, scalar_indexes_struct, T):
#print(times.size)
#print(trajectory)
#print(cols_filter)
#print(scalar_indexes_struct)
#print(T)
T[:] = np.bincount(np.sum(trajectory[:, cols_filter] * scalar_indexes_struct / scalar_indexes_struct[0], axis=1)
.astype(np.int), \
times,
minlength=scalar_indexes_struct[-1]).reshape(-1, T.shape[1])
#print("Done This NODE", T)
def compute_state_residence_time_for_all_nodes(self):
for node_indx, set_of_cims in enumerate(self.amalgamated_cims_struct.sets_of_cims):
self.compute_state_res_time_for_node(node_indx, self.sample_path.trajectories[0].get_times(),
self.sample_path.trajectories[0].get_trajectory(), self.columns_filtering_structure[node_indx],
self.scalar_indexes_converter[node_indx], set_of_cims.state_residence_times)
def compute_state_transitions_for_a_node(self, node_indx, trajectory, cols_filter, scalar_indexing, M):
#print(node_indx)
#print(trajectory)
#print(cols_filter)
#print(scalar_indexing)
#print(M)
diag_indices = np.array([x * M.shape[1] + x % M.shape[1] for x in range(M.shape[0] * M.shape[1])],
dtype=np.int64)
trj_tmp = trajectory[trajectory[:, int(trajectory.shape[1] / 2) + node_indx].astype(np.int) >= 0]
#print(trj_tmp)
#print("Summing", np.sum(trj_tmp[:, cols_filter] * scalar_indexing / scalar_indexing[0], axis=1).astype(np.int))
#print(M.shape[1])
#print(M.shape[2])
M[:] = np.bincount(np.sum(trj_tmp[:, cols_filter] * scalar_indexing / scalar_indexing[0], axis=1).astype(np.int),
minlength=scalar_indexing[-1]).reshape(-1, M.shape[1], M.shape[2])
M_raveled = M.ravel()
M_raveled[diag_indices] = 0
#print(M_raveled)
M_raveled[diag_indices] = np.sum(M, axis=2).ravel()
#print(M_raveled)
#print(M)
def compute_state_transitions_for_all_nodes(self):
for node_indx, set_of_cims in enumerate(self.amalgamated_cims_struct.sets_of_cims):
self.compute_state_transitions_for_a_node(node_indx, self.sample_path.trajectories[0].get_complete_trajectory(),
self.transition_filtering[node_indx],
self.transition_scalar_index_converter[node_indx], set_of_cims.transition_matrices)