import os from line_profiler import LineProfiler import numba as nb import numpy as np import network_graph as ng import sample_path as sp import sets_of_cims_container as acims class ParametersEstimator: def __init__(self, sample_path, net_graph): self.sample_path = sample_path self.net_graph = net_graph self.sets_of_cims_struct = None def init_sets_cims_container(self): self.sets_of_cims_struct = acims.SetsOfCimsContainer(self.net_graph.get_nodes(), self.net_graph.get_states_number_of_all_nodes_sorted(), self.net_graph.get_ordered_by_indx_parents_values_for_all_nodes()) def compute_parameters(self): #print(self.net_graph.get_nodes()) #print(self.amalgamated_cims_struct.sets_of_cims) #enumerate(zip(self.net_graph.get_nodes(), self.amalgamated_cims_struct.sets_of_cims)) for indx, aggr in enumerate(zip(self.net_graph.get_nodes(), self.sets_of_cims_struct.sets_of_cims)): #print(self.net_graph.time_filtering[indx]) #print(self.net_graph.time_scalar_indexing_strucure[indx]) self.compute_state_res_time_for_node(self.net_graph.get_node_indx(aggr[0]), self.sample_path.trajectories.times, self.sample_path.trajectories.trajectory, self.net_graph.time_filtering[indx], self.net_graph.time_scalar_indexing_strucure[indx], aggr[1].state_residence_times) #print(self.net_graph.transition_filtering[indx]) #print(self.net_graph.transition_scalar_indexing_structure[indx]) self.compute_state_transitions_for_a_node(self.net_graph.get_node_indx(aggr[0]), self.sample_path.trajectories.complete_trajectory, self.net_graph.transition_filtering[indx], self.net_graph.transition_scalar_indexing_structure[indx], aggr[1].transition_matrices) aggr[1].build_cims(aggr[1].state_residence_times, aggr[1].transition_matrices) def compute_parameters_for_node(self, node_id): pos_index = self.net_graph.graph_struct.get_positional_node_indx(node_id) node_indx = self.net_graph.get_node_indx(node_id) #print("Nodes", self.net_graph.get_nodes()) self.compute_state_res_time_for_node(node_indx, self.sample_path.trajectories.times, self.sample_path.trajectories.trajectory, self.net_graph.time_filtering[pos_index], self.net_graph.time_scalar_indexing_strucure[pos_index], self.sets_of_cims_struct.sets_of_cims[pos_index].state_residence_times) # print(self.net_graph.transition_filtering[indx]) # print(self.net_graph.transition_scalar_indexing_structure[indx]) self.compute_state_transitions_for_a_node(node_indx, self.sample_path.trajectories.complete_trajectory, self.net_graph.transition_filtering[pos_index], self.net_graph.transition_scalar_indexing_structure[pos_index], self.sets_of_cims_struct.sets_of_cims[pos_index].transition_matrices) self.sets_of_cims_struct.sets_of_cims[pos_index].build_cims( self.sets_of_cims_struct.sets_of_cims[pos_index].state_residence_times, self.sets_of_cims_struct.sets_of_cims[pos_index].transition_matrices) def compute_state_res_time_for_node(self, node_indx, times, trajectory, cols_filter, scalar_indexes_struct, T): #print(times.size) #print(trajectory) #print(cols_filter) #print(scalar_indexes_struct) #print(T) T[:] = np.bincount(np.sum(trajectory[:, cols_filter] * scalar_indexes_struct / scalar_indexes_struct[0], axis=1) .astype(np.int), \ times, minlength=scalar_indexes_struct[-1]).reshape(-1, T.shape[1]) #print("Done This NODE", T) def compute_state_residence_time_for_all_nodes(self): for node_indx, set_of_cims in enumerate(self.amalgamated_cims_struct.sets_of_cims): self.compute_state_res_time_for_node(node_indx, self.sample_path.trajectories[0].get_times(), self.sample_path.trajectories[0].get_trajectory(), self.columns_filtering_structure[node_indx], self.scalar_indexes_converter[node_indx], set_of_cims.state_residence_times) def compute_state_transitions_for_a_node(self, node_indx, trajectory, cols_filter, scalar_indexing, M): #print(node_indx) #print(trajectory) #print(cols_filter) #print(scalar_indexing) #print(M) diag_indices = np.array([x * M.shape[1] + x % M.shape[1] for x in range(M.shape[0] * M.shape[1])], dtype=np.int64) trj_tmp = trajectory[trajectory[:, int(trajectory.shape[1] / 2) + node_indx].astype(np.int) >= 0] #print(trj_tmp) #print("Summing", np.sum(trj_tmp[:, cols_filter] * scalar_indexing / scalar_indexing[0], axis=1).astype(np.int)) #print(M.shape[1]) #print(M.shape[2]) M[:] = np.bincount(np.sum(trj_tmp[:, cols_filter] * scalar_indexing / scalar_indexing[0], axis=1).astype(np.int), minlength=scalar_indexing[-1]).reshape(-1, M.shape[1], M.shape[2]) M_raveled = M.ravel() M_raveled[diag_indices] = 0 #print(M_raveled) M_raveled[diag_indices] = np.sum(M, axis=2).ravel() #print(M_raveled) #print(M) def compute_state_transitions_for_all_nodes(self): for node_indx, set_of_cims in enumerate(self.amalgamated_cims_struct.sets_of_cims): self.compute_state_transitions_for_a_node(node_indx, self.sample_path.trajectories[0].get_complete_trajectory(), self.transition_filtering[node_indx], self.transition_scalar_index_converter[node_indx], set_of_cims.transition_matrices)