|
|
|
@ -5,6 +5,8 @@ from .trajectory import Trajectory |
|
|
|
|
import numpy as np |
|
|
|
|
import pandas as pd |
|
|
|
|
import re |
|
|
|
|
import os |
|
|
|
|
import json |
|
|
|
|
from numpy import random |
|
|
|
|
|
|
|
|
|
class TrajectoryGenerator(object): |
|
|
|
@ -32,6 +34,8 @@ class TrajectoryGenerator(object): |
|
|
|
|
node_states_number = self._importer._df_variables.where(self._importer._df_variables["Name"] == v)["Value"], p_combs = p_combs, cims = v_cims) |
|
|
|
|
self._cims[v] = sof |
|
|
|
|
|
|
|
|
|
self._generated_trajectory = None |
|
|
|
|
|
|
|
|
|
def CTBN_Sample(self, t_end = -1, max_tr = -1): |
|
|
|
|
t = 0 |
|
|
|
|
sigma = pd.DataFrame(columns = (["Time"] + self._vnames)) |
|
|
|
@ -40,10 +44,10 @@ class TrajectoryGenerator(object): |
|
|
|
|
n_tr = 0 |
|
|
|
|
|
|
|
|
|
while True: |
|
|
|
|
current_values = sigma.loc[len(sigma) - 1] |
|
|
|
|
|
|
|
|
|
for i in range(0, time.size): |
|
|
|
|
if np.isnan(time[i]): |
|
|
|
|
# Probability to transition from current state v_values[i] to (1 - v_values[i]) |
|
|
|
|
current_values = sigma.loc[len(sigma) - 1] |
|
|
|
|
cim = self._cims[self._vnames[i]].filter_cims_with_mask(np.array([True for p in self._parents[self._vnames[i]]]), |
|
|
|
|
[current_values.at[p] for p in self._parents[self._vnames[i]]])[0].cim |
|
|
|
|
param = -1 * cim[current_values.at[self._vnames[i]]][current_values.at[self._vnames[i]]] |
|
|
|
@ -55,11 +59,11 @@ class TrajectoryGenerator(object): |
|
|
|
|
t = time[next] |
|
|
|
|
|
|
|
|
|
if (max_tr != -1 and n_tr == max_tr) or (t_end != -1 and t >= t_end): |
|
|
|
|
""" columns = self._importer.build_list_of_samples_array(sigma) |
|
|
|
|
columns[0] = pd.to_numeric(columns[0]) |
|
|
|
|
return Trajectory(columns, len(self._vnames) + 1) """ |
|
|
|
|
self._generated_trajectory = sigma |
|
|
|
|
return sigma |
|
|
|
|
else: |
|
|
|
|
cim = self._cims[self._vnames[next]].filter_cims_with_mask(np.array([True for p in self._parents[self._vnames[next]]]), |
|
|
|
|
[current_values.at[p] for p in self._parents[self._vnames[next]]])[0].cim |
|
|
|
|
cim_row = np.array(cim[current_values.at[self._vnames[next]]]) |
|
|
|
|
cim_row[current_values.at[self._vnames[next]]] = 0 |
|
|
|
|
cim_row /= sum(cim_row) |
|
|
|
@ -74,3 +78,15 @@ class TrajectoryGenerator(object): |
|
|
|
|
|
|
|
|
|
# undefine variable time |
|
|
|
|
time[next] = np.NaN |
|
|
|
|
|
|
|
|
|
def out_json(self, filename): |
|
|
|
|
data = { |
|
|
|
|
"dyn.str": self._importer._raw_data[0]["dyn.str"], |
|
|
|
|
"variables": self._importer._raw_data[0]["variables"], |
|
|
|
|
"dyn.cims": self._importer._raw_data[0]["dyn.cims"], |
|
|
|
|
"samples": [json.loads(self._generated_trajectory.to_json(orient="records"))] |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
path = os.getcwd() |
|
|
|
|
with open(path + "/" + filename, "w") as json_file: |
|
|
|
|
json.dump(data, json_file) |