|
|
@ -13,29 +13,31 @@ import utility.abstract_importer as ai |
|
|
|
class SampleImporter(ai.AbstractImporter): |
|
|
|
class SampleImporter(ai.AbstractImporter): |
|
|
|
#TODO: Scrivere documentazione |
|
|
|
#TODO: Scrivere documentazione |
|
|
|
"""Implements the abstracts methods of AbstractImporter and adds all the necessary methods to process and prepare |
|
|
|
"""Implements the abstracts methods of AbstractImporter and adds all the necessary methods to process and prepare |
|
|
|
the data in json extension. |
|
|
|
the data loaded directly by using DataFrame |
|
|
|
|
|
|
|
|
|
|
|
:param file_path: the path of the file that contains tha data to be imported |
|
|
|
:param trajectory_list: the data that describes the trajectories |
|
|
|
:type file_path: string |
|
|
|
:type trajectory_list: typing.Union[pd.DataFrame, np.ndarray, typing.List] |
|
|
|
:param samples_label: the reference key for the samples in the trajectories |
|
|
|
:param variables: the data that describes the variables with name and cardinality |
|
|
|
:type samples_label: string |
|
|
|
:type variables: typing.Union[pd.DataFrame, np.ndarray, typing.List] |
|
|
|
:param structure_label: the reference key for the structure of the network data |
|
|
|
:param prior_net_structure: the data of the real structure, if it exists |
|
|
|
:type structure_label: string |
|
|
|
:type prior_net_structure: typing.Union[pd.DataFrame, np.ndarray, typing.List] |
|
|
|
:param variables_label: the reference key for the cardinalites of the nodes data |
|
|
|
|
|
|
|
:type variables_label: string |
|
|
|
|
|
|
|
:param time_key: the key used to identify the timestamps in each trajectory |
|
|
|
|
|
|
|
:type time_key: string |
|
|
|
|
|
|
|
:param variables_key: the key used to identify the names of the variables in the net |
|
|
|
|
|
|
|
:type variables_key: string |
|
|
|
|
|
|
|
:_array_indx: the index of the outer JsonArray to extract the data from |
|
|
|
|
|
|
|
:type _array_indx: int |
|
|
|
|
|
|
|
:_df_samples_list: a Dataframe list in which every dataframe contains a trajectory |
|
|
|
:_df_samples_list: a Dataframe list in which every dataframe contains a trajectory |
|
|
|
:_raw_data: The raw contents of the json file to import |
|
|
|
:_raw_data: The raw contents of the json file to import |
|
|
|
:type _raw_data: List |
|
|
|
:type _raw_data: List |
|
|
|
""" |
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, trajectory_list: typing.Union[pd.DataFrame, np.ndarray] = None, |
|
|
|
def __init__(self, |
|
|
|
variables: pd.DataFrame = None, prior_net_structure: pd.DataFrame = None): |
|
|
|
trajectory_list: typing.Union[pd.DataFrame, np.ndarray, typing.List] = None, |
|
|
|
|
|
|
|
variables: typing.Union[pd.DataFrame, np.ndarray, typing.List] = None, |
|
|
|
|
|
|
|
prior_net_structure: typing.Union[pd.DataFrame, np.ndarray,typing.List] = None): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'If the data are not DataFrame, it will be converted' |
|
|
|
|
|
|
|
if isinstance(variables,list) or isinstance(variables,np.ndarray): |
|
|
|
|
|
|
|
variables = pd.DataFrame(variables) |
|
|
|
|
|
|
|
if isinstance(variables,list) or isinstance(variables,np.ndarray): |
|
|
|
|
|
|
|
prior_net_structure=pd.DataFrame(prior_net_structure) |
|
|
|
|
|
|
|
|
|
|
|
super(SampleImporter, self).__init__(trajectory_list =trajectory_list, |
|
|
|
super(SampleImporter, self).__init__(trajectory_list =trajectory_list, |
|
|
|
variables= variables, |
|
|
|
variables= variables, |
|
|
|
prior_net_structure=prior_net_structure) |
|
|
|
prior_net_structure=prior_net_structure) |
|
|
@ -55,7 +57,7 @@ class SampleImporter(ai.AbstractImporter): |
|
|
|
self.compute_row_delta_in_all_samples_frames(samples_list) |
|
|
|
self.compute_row_delta_in_all_samples_frames(samples_list) |
|
|
|
|
|
|
|
|
|
|
|
def build_sorter(self, sample_frame: pd.DataFrame) -> typing.List: |
|
|
|
def build_sorter(self, sample_frame: pd.DataFrame) -> typing.List: |
|
|
|
"""Implements the abstract method build_sorter of the :class:`AbstractImporter` for this dataset. |
|
|
|
"""Implements the abstract method build_sorter of the :class:`AbstractImporter` in order to get the ordered variables list. |
|
|
|
""" |
|
|
|
""" |
|
|
|
columns_header = list(sample_frame.columns.values) |
|
|
|
columns_header = list(sample_frame.columns.values) |
|
|
|
del columns_header[0] |
|
|
|
del columns_header[0] |
|
|
|