1
0
Fork 0

Add Structure Estimation Algorithm

parallel_struct_est
philpMartin 4 years ago
parent 3987f13165
commit a852c465d3
  1. 170
      main_package/classes/structure_estimator.py
  2. 2
      main_package/tests/test_parameters_estimator.py
  3. 31
      main_package/tests/test_structure_estimator.py

@ -0,0 +1,170 @@
import pandas as pd
import numpy as np
import math
import itertools
import networkx as nx
from scipy.stats import f as f_dist
from scipy.stats import chi2 as chi2_dist
import sample_path as sp
import structure as st
import network_graph as ng
import parameters_estimator as pe
class StructureEstimator:
def __init__(self, sample_path, exp_test_alfa, chi_test_alfa):
self.sample_path = sample_path
self.complete_graph_frame = self.build_complete_graph_frame(self.sample_path.structure.list_of_nodes_labels())
self.complete_graph = self.build_complete_graph(self.sample_path.structure.list_of_nodes_labels())
self.exp_test_sign = exp_test_alfa
self.chi_test_alfa = chi_test_alfa
def build_complete_graph_frame(self, node_ids):
complete_frame = pd.DataFrame(itertools.permutations(node_ids, 2))
complete_frame.columns = ['From', 'To']
return complete_frame
def build_complete_graph(self, node_ids):
complete_graph = nx.DiGraph()
complete_graph.add_nodes_from(node_ids)
complete_graph.add_edges_from(itertools.permutations(node_ids, 2))
return complete_graph
def complete_test(self, test_parent, test_child, parent_set):
tmp_df = self.complete_graph_frame.loc[self.complete_graph_frame['To'].isin([test_child])]
#print(tmp_df)
d1 = tmp_df.loc[tmp_df['From'].isin(parent_set)]
parent_set.append(test_child)
#print(parent_set)
v1 = self.sample_path.structure.variables_frame.loc[self.sample_path.structure.variables_frame['Name'].isin(parent_set)]
s1 = st.Structure(d1, v1, self.sample_path.total_variables_count)
g1 = ng.NetworkGraph(s1)
g1.init_graph()
parent_set.append(test_parent)
d2 = tmp_df.loc[tmp_df['From'].isin(parent_set)]
v2 = self.sample_path.structure.variables_frame.loc[self.sample_path.structure.variables_frame['Name'].isin(parent_set)]
#print(d2)
#print(v2)
s2 = st.Structure(d2, v2, self.sample_path.total_variables_count)
g2 = ng.NetworkGraph(s2)
g2.init_graph()
p1 = pe.ParametersEstimator(self.sample_path, g1)
p1.init_sets_cims_container()
p1.compute_parameters()
p2 = pe.ParametersEstimator(self.sample_path, g2)
p2.init_sets_cims_container()
p2.compute_parameters()
#for cim in p1.sets_of_cims_struct.sets_of_cims[s1.get_positional_node_indx(test_child)].actual_cims:
#print(cim)
#print(cim.state_transition_matrix)
#print("C_1", p1.sets_of_cims_struct.sets_of_cims[s1.get_positional_node_indx(test_child)].transition_matrices)
indx = 0
for i, cim1 in enumerate(
p1.sets_of_cims_struct.sets_of_cims[s1.get_positional_node_indx(test_child)].actual_cims):
#for j, cim2 in enumerate(
#p2.sets_of_cims_struct.sets_of_cims[s2.get_positional_node_indx(test_child)].actual_cims):
for j in range(indx, self.sample_path.structure.get_states_number(test_parent) + indx):
print("J", j)
cim2 = p2.sets_of_cims_struct.sets_of_cims[s2.get_positional_node_indx(test_child)].actual_cims[j]
indx += 1
print(indx)
print("Run Test", i, j)
if not self.independence_test(test_child, cim1, cim2):
return False
return True
def independence_test(self, tested_child, cim1, cim2):
# Fake exp test
for val in range(0, self.sample_path.structure.get_states_number(tested_child)): # i possibili valori di tested child TODO QUESTO CONTO DEVE ESSERE VETTORIZZATO
r1 = cim1.state_transition_matrix[val][val]
r2 = cim2.state_transition_matrix[val][val]
print("No Test Parent:",cim1.cim[val][val],"With Test Parent", cim2.cim[val][val])
F = cim2.cim[val][val] / cim1.cim[val][val]
print("Exponential test", F, r1, r2)
#print(f_dist.ppf(1 - self.exp_test_sign / 2, r1, r2))
#print(f_dist.ppf(self.exp_test_sign / 2, r1, r2))
if F < f_dist.ppf(self.exp_test_sign / 2, r1, r2) or \
F > f_dist.ppf(1 - self.exp_test_sign / 2, r1, r2):
print("CONDITIONALLY DEPENDENT EXP")
return False
# fake chi test
M1_no_diag = self.remove_diagonal_elements(cim1.state_transition_matrix)
M2_no_diag = self.remove_diagonal_elements(cim2.state_transition_matrix)
print("M1 no diag", M1_no_diag)
print("M2 no diag", M2_no_diag)
chi_2_quantile = chi2_dist.ppf(1 - self.chi_test_alfa, self.sample_path.structure.get_states_number(tested_child) - 1)
for val in range(0, self.sample_path.structure.get_states_number(tested_child)):
K = math.sqrt(cim1.state_transition_matrix[val][val] / cim2.state_transition_matrix[val][val])
L = 1 / K
Chi = np.sum(np.power(K * M2_no_diag[val] - L *M1_no_diag[val], 2) /
(M1_no_diag[val] + M2_no_diag[val]))
print("Chi Stats", Chi)
print("Chi Quantile", chi_2_quantile)
if Chi > chi_2_quantile:
print("CONDITIONALLY DEPENDENT CHI")
return False
#print("Chi test", Chi)
return True
def one_iteration_of_CTPC_algorithm(self, var_id):
u = list(self.complete_graph.predecessors(var_id))
tests_parents_numb = len(u)
#print(u)
b = 0
parent_indx = 0
while b < len(u):
#for parent_id in u:
parent_indx = 0
while u and parent_indx < tests_parents_numb and b < len(u):
# list_without_test_parent = u.remove(parent_id)
removed = False
print("b", b)
print("Parent Indx", parent_indx)
#if not list(self.generate_possible_sub_sets_of_size(u, b, u[parent_indx])):
#break
S = self.generate_possible_sub_sets_of_size(u, b, u[parent_indx])
print("U Set", u)
print("S", S)
for parents_set in S:
print("Parent Set", parents_set)
print("Test Parent", u[parent_indx])
if self.complete_test(u[parent_indx], var_id, parents_set):
print("Removing EDGE:", u[parent_indx], var_id)
self.complete_graph.remove_edge(u[parent_indx], var_id)
#self.complete_graph_frame = \
#self.complete_graph_frame[(self.complete_graph_frame.From !=
# u[parent_indx]) & (self.complete_graph_frame.To != var_id)]
u.remove(u[parent_indx])
removed = True
#else:
#parent_indx += 1
if not removed:
parent_indx += 1
b += 1
def generate_possible_sub_sets_of_size(self, u, size, parent_id):
print("Inside Generate subsets", u)
print("InsideGenerate Subsets", parent_id)
list_without_test_parent = u[:]
list_without_test_parent.remove(parent_id)
# u.remove(parent_id)
#print(list(map(list, itertools.combinations(list_without_test_parent, size))))
return map(list, itertools.combinations(list_without_test_parent, size))
def remove_diagonal_elements(self, matrix):
m = matrix.shape[0]
strided = np.lib.stride_tricks.as_strided
s0, s1 = matrix.strides
return strided(matrix.ravel()[1:], shape=(m - 1, m), strides=(s0 + s1, s1)).reshape(m, -1)

@ -7,7 +7,7 @@ import sets_of_cims_container as scc
import parameters_estimator as pe import parameters_estimator as pe
import json_importer as ji import json_importer as ji
#TODO bisogna trovare un modo per testare i metodi che stimano i tempi e le transizioni per i singoli nodi
class TestParametersEstimatior(unittest.TestCase): class TestParametersEstimatior(unittest.TestCase):
@classmethod @classmethod

@ -0,0 +1,31 @@
import unittest
import sample_path as sp
import structure_estimator as se
class TestStructureEstimator(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
cls.s1 = sp.SamplePath('../data', 'samples', 'dyn.str', 'variables', 'Time', 'Name')
cls.s1.build_trajectories()
cls.s1.build_structure()
def test_init(self):
se1 = se.StructureEstimator(self.s1)
self.assertEqual(self.s1, se1.sample_path)
self.assertEqual(se1.complete_graph_frame.shape[0],
self.s1.total_variables_count *(self.s1.total_variables_count - 1))
def test_one_iteration(self):
se1 = se.StructureEstimator(self.s1, 0.1, 0.1)
se1.one_iteration_of_CTPC_algorithm('X')
#self.aux_test_complete_test(se1, 'X', 'Y', ['Z'])
print(se1.complete_graph.edges)
def aux_test_complete_test(self, estimator, test_par, test_child, p_set):
estimator.complete_test(test_par, test_child, p_set)
if __name__ == '__main__':
unittest.main()