parent
08d29d3e65
commit
72b69612b3
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,147 @@ |
|||||||
|
import sys |
||||||
|
sys.path.append("../../classes/") |
||||||
|
import glob |
||||||
|
import math |
||||||
|
import os |
||||||
|
import unittest |
||||||
|
|
||||||
|
import networkx as nx |
||||||
|
import numpy as np |
||||||
|
import pandas as pd |
||||||
|
import psutil |
||||||
|
from line_profiler import LineProfiler |
||||||
|
import copy |
||||||
|
import json |
||||||
|
|
||||||
|
import utility.cache as ch |
||||||
|
import structure_graph.sample_path as sp |
||||||
|
import estimators.structure_score_based_estimator as se_score |
||||||
|
import estimators.structure_constraint_based_estimator as se_constr |
||||||
|
import utility.sample_importer as si |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class TestTabuSearch(unittest.TestCase): |
||||||
|
|
||||||
|
@classmethod |
||||||
|
def setUpClass(cls): |
||||||
|
pass |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def test_constr(self): |
||||||
|
|
||||||
|
list_constraint= [0,1] |
||||||
|
|
||||||
|
list_cardinality= [[2,"binary"],[3,"ternary"], [4,"quaternary"]] |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
list_dens = [["0.1","_01"],["0.2","_02"], ["0.3",""], ["0.4","_04"] ] |
||||||
|
|
||||||
|
for constr in list_constraint: |
||||||
|
for card in list_cardinality: |
||||||
|
for dens in list_dens: |
||||||
|
|
||||||
|
if card[0] == 4: |
||||||
|
list_vals= [3,4,5,6,10,15] |
||||||
|
else: |
||||||
|
list_vals= [3,4,5,6,10,15,20] |
||||||
|
|
||||||
|
for var_n in list_vals: |
||||||
|
|
||||||
|
patience = 25 |
||||||
|
|
||||||
|
var_number= var_n |
||||||
|
|
||||||
|
if var_number > 11: |
||||||
|
patience = 30 |
||||||
|
|
||||||
|
if var_number > 16: |
||||||
|
patience = 35 |
||||||
|
|
||||||
|
|
||||||
|
cardinality = card[0] |
||||||
|
cardinality_string = card[1] |
||||||
|
|
||||||
|
density= dens[0] |
||||||
|
density_string = dens[1] |
||||||
|
|
||||||
|
constraint = constr |
||||||
|
|
||||||
|
index = 1 |
||||||
|
num_networks=11 |
||||||
|
|
||||||
|
|
||||||
|
while index <= num_networks: |
||||||
|
|
||||||
|
with open(f"/home/alessandro/Documents/ctbn_cba/data/networks_and_trajectories_{cardinality_string}_data{density_string}_{var_number}/{index}.json") as f: |
||||||
|
raw_data = json.load(f) |
||||||
|
|
||||||
|
trajectory_list_raw= raw_data["samples"] |
||||||
|
|
||||||
|
trajectory_list = [pd.DataFrame(sample) for sample in trajectory_list_raw] |
||||||
|
|
||||||
|
variables= pd.DataFrame(raw_data["variables"]) |
||||||
|
prior_net_structure = pd.DataFrame(raw_data["dyn.str"]) |
||||||
|
|
||||||
|
|
||||||
|
self.importer = si.SampleImporter( |
||||||
|
trajectory_list=trajectory_list, |
||||||
|
variables=variables, |
||||||
|
prior_net_structure=prior_net_structure |
||||||
|
) |
||||||
|
|
||||||
|
self.importer.import_data() |
||||||
|
self.s1 = sp.SamplePath(self.importer) |
||||||
|
self.s1.build_trajectories() |
||||||
|
self.s1.build_structure() |
||||||
|
|
||||||
|
|
||||||
|
true_edges = copy.deepcopy(self.s1.structure.edges) |
||||||
|
true_edges = set(map(tuple, true_edges)) |
||||||
|
|
||||||
|
if constr == 1: |
||||||
|
se1 = se_score.StructureScoreBasedEstimator(self.s1) |
||||||
|
set_list_edges = se1.estimate_structure( |
||||||
|
max_parents = None, |
||||||
|
iterations_number = 100, |
||||||
|
patience = patience, |
||||||
|
tabu_length = var_number, |
||||||
|
tabu_rules_duration = var_number, |
||||||
|
optimizer = 'tabu' |
||||||
|
) |
||||||
|
else: |
||||||
|
se1 = se_constr.StructureConstraintBasedEstimator(self.s1,0.1,0.1) |
||||||
|
set_list_edges = se1.estimate_structure(disable_multiprocessing=False) |
||||||
|
|
||||||
|
n_added_fake_edges = len(set_list_edges.difference(true_edges)) |
||||||
|
|
||||||
|
n_missing_edges = len(true_edges.difference(set_list_edges)) |
||||||
|
|
||||||
|
n_true_positive = len(true_edges) - n_missing_edges |
||||||
|
|
||||||
|
precision = n_true_positive / (n_true_positive + n_added_fake_edges) |
||||||
|
|
||||||
|
recall = n_true_positive / (n_true_positive + n_missing_edges) |
||||||
|
|
||||||
|
f1_measure = round(2* (precision*recall) / (precision+recall),3) |
||||||
|
|
||||||
|
print(true_edges) |
||||||
|
print(set_list_edges) |
||||||
|
print(f"precision: {precision} ") |
||||||
|
print(f"recall: {recall} ") |
||||||
|
|
||||||
|
with open("../results/results.csv", 'a+') as fi: |
||||||
|
fi.write(f"{constraint},{var_number},{density},{cardinality},{index},{f1_measure},{round(precision,3)},{round(recall,3)}") |
||||||
|
|
||||||
|
index += 1 |
||||||
|
|
||||||
|
self.assertEqual(set_list_edges, true_edges) |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__': |
||||||
|
unittest.main() |
||||||
|
|
Reference in new issue