|
|
|
@ -27,6 +27,7 @@ class JsonImporter(AbstractImporter): |
|
|
|
|
self._df_structure = pd.DataFrame() |
|
|
|
|
self._df_variables = pd.DataFrame() |
|
|
|
|
self._concatenated_samples = None |
|
|
|
|
|
|
|
|
|
super(JsonImporter, self).__init__(files_path) |
|
|
|
|
|
|
|
|
|
def import_data(self): |
|
|
|
@ -115,6 +116,26 @@ class JsonImporter(AbstractImporter): |
|
|
|
|
for indx in range(len(self.df_samples_list)): # Le singole traj non servono più |
|
|
|
|
self.df_samples_list[indx] = self.df_samples_list[indx].iloc[0:0] |
|
|
|
|
|
|
|
|
|
def compute_row_delta_sigle_samples_frame(self, sample_frame): |
|
|
|
|
columns_header = list(sample_frame.columns.values) |
|
|
|
|
#print(columns_header) |
|
|
|
|
for col_name in columns_header: |
|
|
|
|
if col_name == 'Time': |
|
|
|
|
sample_frame[col_name + 'Delta'] = sample_frame[col_name].diff() |
|
|
|
|
#else: |
|
|
|
|
#sample_frame[col_name + 'Delta'] = (sample_frame[col_name].diff().bfill() != 0).astype(int) |
|
|
|
|
#sample_frame['Delta'] = sample_frame['Time'].diff() |
|
|
|
|
#print(sample_frame) |
|
|
|
|
|
|
|
|
|
def compute_row_delta_in_all_samples_frames(self): |
|
|
|
|
for sample in self.df_samples_list: |
|
|
|
|
self.compute_row_delta_sigle_samples_frame(sample) |
|
|
|
|
self.concatenated_samples = pd.concat(self.df_samples_list) |
|
|
|
|
self.concatenated_samples['Time'] = self.concatenated_samples['TimeDelta'] |
|
|
|
|
del self.concatenated_samples['TimeDelta'] |
|
|
|
|
self.concatenated_samples['Time'] = self.concatenated_samples['Time'].fillna(0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def build_list_of_samples_array(self, data_frame): |
|
|
|
|
""" |
|
|
|
|
Costruisce una lista contenente le colonne presenti nel dataframe data_frame convertendole in numpy_array |
|
|
|
@ -147,6 +168,7 @@ class JsonImporter(AbstractImporter): |
|
|
|
|
def variables(self): |
|
|
|
|
return self._df_variables |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@property |
|
|
|
|
def structure(self): |
|
|
|
|
return self._df_structure |
|
|
|
@ -165,3 +187,5 @@ print(ij.df_structure) |
|
|
|
|
print(ij.df_variables) |
|
|
|
|
print(ij.concatenated_samples)""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|