1
0
Fork 0

Refactor SamplePath class

parallel_struct_est
philpMartin 4 years ago
parent 7edfb6c962
commit 5c729eea55
  1. 23
      main_package/classes/abstract_importer.py
  2. 37
      main_package/classes/abstract_sample_path.py
  3. 22
      main_package/classes/json_importer.py
  4. 16
      main_package/classes/network_graph.py
  5. 26
      main_package/classes/parameters_estimator.py
  6. 28
      main_package/classes/sample_path.py
  7. 21
      main_package/classes/set_of_cims.py
  8. 19
      main_package/classes/structure.py
  9. 19
      main_package/classes/structure_estimator.py
  10. 4
      main_package/classes/trajectory.py
  11. 32
      main_package/tests/test_json_importer.py
  12. 7
      main_package/tests/test_networkgraph.py
  13. 15
      main_package/tests/test_parameters_estimator.py
  14. 10
      main_package/tests/test_sample_path.py
  15. 63
      main_package/tests/test_structure.py
  16. 18
      main_package/tests/test_structure_estimator.py

@ -3,34 +3,21 @@ from abc import ABC, abstractmethod
class AbstractImporter(ABC): class AbstractImporter(ABC):
""" """
Interfaccia che espone i metodi necessari all'importing delle trajectories e della struttura della CTBN Interface that exposes all the necessary methods to import the trajectories and the net structure.
:files_path: il path in cui sono presenti i/il file da importare :file_path: the file path
""" """
def __init__(self, files_path): def __init__(self, file_path: str):
self.files_path = files_path self.file_path = file_path
super().__init__() super().__init__()
@abstractmethod @abstractmethod
def import_trajectories(self, raw_data): def import_trajectories(self, raw_data):
"""
Costruisce le traj partendo dal dataset raw_data
Parameters:
raw_data: il dataset da cui estrarre le traj
Returns:
void
"""
pass pass
@abstractmethod @abstractmethod
def import_structure(self, raw_data): def import_structure(self, raw_data):
"""
Costruisce la struttura della rete partendo dal dataset raw_data
Parameters:
raw_data: il dataset da cui estrarre la struttura
Returns:
void
"""
pass pass

@ -0,0 +1,37 @@
from abc import ABC, abstractmethod
import abstract_importer as ai
class AbstractSamplePath(ABC):
def __init__(self, importer: ai.AbstractImporter):
self.importer = importer
self._trajectories = None
self._structure = None
super().__init__()
@abstractmethod
def build_trajectories(self):
"""
Builds the Trajectory object that will contain all the trajectories.
Assigns the Trajectoriy object to the instance attribute _trajectories
Clears all the unused dataframes in Importer Object
Parameters:
void
Returns:
void
"""
pass
@abstractmethod
def build_structure(self):
"""
Builds the Structure object that aggregates all the infos about the net.
Assigns the Structure object to the instance attribuite _structure
Parameters:
void
Returns:
void
"""
pass

@ -15,7 +15,7 @@ class JsonImporter(AbstractImporter):
|_ dyn.str |_ dyn.str
|_ samples |_ samples
|_ variabels |_ variabels
:files_path: the path that contains tha data to be imported :file_path: the path of the file that contains tha data to be imported
:samples_label: the reference key for the samples in the trajectories :samples_label: the reference key for the samples in the trajectories
:structure_label: the reference key for the structure of the network data :structure_label: the reference key for the structure of the network data
:variables_label: the reference key for the cardinalites of the nodes data :variables_label: the reference key for the cardinalites of the nodes data
@ -28,7 +28,7 @@ class JsonImporter(AbstractImporter):
:sorter: the columns header(excluding the time column) of the Dataframe concatenated_samples :sorter: the columns header(excluding the time column) of the Dataframe concatenated_samples
""" """
def __init__(self, files_path: str, samples_label: str, structure_label: str, variables_label: str, time_key: str, def __init__(self, file_path: str, samples_label: str, structure_label: str, variables_label: str, time_key: str,
variables_key: str): variables_key: str):
self.samples_label = samples_label self.samples_label = samples_label
self.structure_label = structure_label self.structure_label = structure_label
@ -40,7 +40,7 @@ class JsonImporter(AbstractImporter):
self._df_variables = pd.DataFrame() self._df_variables = pd.DataFrame()
self._concatenated_samples = None self._concatenated_samples = None
self.sorter = None self.sorter = None
super(JsonImporter, self).__init__(files_path) super(JsonImporter, self).__init__(file_path)
def import_data(self): def import_data(self):
""" """
@ -110,15 +110,15 @@ class JsonImporter(AbstractImporter):
data: the contents of the json file data: the contents of the json file
""" """
try: #try:
read_files = glob.glob(os.path.join(self.files_path, "*.json")) #read_files = glob.glob(os.path.join(self.files_path, "*.json"))
if not read_files: #if not read_files:
raise ValueError('No .json file found in the entered path!') #raise ValueError('No .json file found in the entered path!')
with open(read_files[0]) as f: with open(self.file_path) as f:
data = json.load(f) data = json.load(f)
return data return data
except ValueError as err: #except ValueError as err:
print(err.args) #print(err.args)
def one_level_normalizing(self, raw_data: typing.List, indx: int, key: str) -> pd.DataFrame: def one_level_normalizing(self, raw_data: typing.List, indx: int, key: str) -> pd.DataFrame:
""" """
@ -207,13 +207,11 @@ class JsonImporter(AbstractImporter):
def build_list_of_samples_array(self, data_frame: pd.DataFrame) -> typing.List: def build_list_of_samples_array(self, data_frame: pd.DataFrame) -> typing.List:
""" """
Costruisce una lista contenente le colonne presenti nel dataframe data_frame convertendole in numpy_array
Builds a List containing the columns of dataframe and converts them to a numpy array. Builds a List containing the columns of dataframe and converts them to a numpy array.
Parameters: Parameters:
:data_frame: the dataframe from which the columns have to be extracted and converted :data_frame: the dataframe from which the columns have to be extracted and converted
Returns: Returns:
:columns_list: the resulting list of numpy arrays :columns_list: the resulting list of numpy arrays
""" """
columns_list = [data_frame[column].to_numpy() for column in data_frame] columns_list = [data_frame[column].to_numpy() for column in data_frame]
#for column in data_frame: #for column in data_frame:

@ -136,7 +136,7 @@ class NetworkGraph:
fancy_indx = [i[1] for i in self.aggregated_info_about_nodes_parents] fancy_indx = [i[1] for i in self.aggregated_info_about_nodes_parents]
return fancy_indx return fancy_indx
def build_time_scalar_indexing_structure_for_a_node(self, node_id: str, parents_vals: typing.List): def build_time_scalar_indexing_structure_for_a_node(self, node_id: str, parents_vals: typing.List) -> np.ndarray:
""" """
Builds an indexing structure for the computation of state residence times values. Builds an indexing structure for the computation of state residence times values.
@ -153,7 +153,7 @@ class NetworkGraph:
return T_vector return T_vector
def build_transition_scalar_indexing_structure_for_a_node(self, node_id: str, parents_vals: typing.List): def build_transition_scalar_indexing_structure_for_a_node(self, node_id: str, parents_vals: typing.List) -> np.ndarray:
""" """
Builds an indexing structure for the computation of state transitions values. Builds an indexing structure for the computation of state transitions values.
@ -171,7 +171,7 @@ class NetworkGraph:
M_vector = M_vector.cumprod().astype(np.int) M_vector = M_vector.cumprod().astype(np.int)
return M_vector return M_vector
def build_time_columns_filtering_for_a_node(self, node_indx: int, p_indxs: typing.List): def build_time_columns_filtering_for_a_node(self, node_indx: int, p_indxs: typing.List) -> np.ndarray:
""" """
Builds the necessary structure to filter the desired columns indicated by node_indx and p_indxs in the dataset. Builds the necessary structure to filter the desired columns indicated by node_indx and p_indxs in the dataset.
This structute will be used in the computation of the state res times. This structute will be used in the computation of the state res times.
@ -183,7 +183,7 @@ class NetworkGraph:
""" """
return np.append(np.array([node_indx], dtype=np.int), p_indxs).astype(np.int) return np.append(np.array([node_indx], dtype=np.int), p_indxs).astype(np.int)
def build_transition_filtering_for_a_node(self, node_indx, p_indxs): def build_transition_filtering_for_a_node(self, node_indx, p_indxs) -> np.ndarray:
""" """
Builds the necessary structure to filter the desired columns indicated by node_indx and p_indxs in the dataset. Builds the necessary structure to filter the desired columns indicated by node_indx and p_indxs in the dataset.
This structute will be used in the computation of the state transitions values. This structute will be used in the computation of the state transitions values.
@ -196,7 +196,7 @@ class NetworkGraph:
nodes_number = self.graph_struct.total_variables_number nodes_number = self.graph_struct.total_variables_number
return np.array([node_indx + nodes_number, node_indx, *p_indxs], dtype=np.int) return np.array([node_indx + nodes_number, node_indx, *p_indxs], dtype=np.int)
def build_p_comb_structure_for_a_node(self, parents_values: typing.List): def build_p_comb_structure_for_a_node(self, parents_values: typing.List) -> np.ndarray:
""" """
Builds the combinatory structure that contains the combinations of all the values contained in parents_values. Builds the combinatory structure that contains the combinations of all the values contained in parents_values.
@ -252,12 +252,6 @@ class NetworkGraph:
def get_states_number(self, node_id): def get_states_number(self, node_id):
return self.graph.nodes[node_id]['val'] return self.graph.nodes[node_id]['val']
"""
def get_states_number_by_indx(self, node_indx):
return self.graph_struct.get_states_number_by_indx(node_indx)
def get_node_by_index(self, node_indx):
return self.graph_struct.get_node_id(node_indx)"""
def get_node_indx(self, node_id): def get_node_indx(self, node_id):
return nx.get_node_attributes(self.graph, 'indx')[node_id] return nx.get_node_attributes(self.graph, 'indx')[node_id]

@ -62,30 +62,8 @@ class ParametersEstimator:
self.net_graph.transition_scalar_indexing_structure[indx], self.net_graph.transition_scalar_indexing_structure[indx],
aggr[1].transition_matrices) aggr[1].transition_matrices)
aggr[1].build_cims(aggr[1].state_residence_times, aggr[1].transition_matrices) aggr[1].build_cims(aggr[1].state_residence_times, aggr[1].transition_matrices)
"""
def compute_parameters_for_node(self, node_id): def compute_parameters_for_node(self, node_id: str) -> sofc.SetOfCims:
pos_index = self.net_graph.get_positional_node_indx(node_id)
node_indx = self.net_graph.get_node_indx(node_id)
state_res_times = self.sets_of_cims_struct.sets_of_cims[pos_index].state_residence_times
transition_matrices = self.sets_of_cims_struct.sets_of_cims[pos_index].transition_matrices
#print("Nodes", self.net_graph.get_nodes())
self.compute_state_res_time_for_node(node_indx, self.sample_path.trajectories.times,
self.sample_path.trajectories.trajectory,
self.net_graph.time_filtering[pos_index],
self.net_graph.time_scalar_indexing_strucure[pos_index],
state_res_times)
# print(self.net_graph.transition_filtering[indx])
# print(self.net_graph.transition_scalar_indexing_structure[indx])
self.compute_state_transitions_for_a_node(node_indx,
self.sample_path.trajectories.complete_trajectory,
self.net_graph.transition_filtering[pos_index],
self.net_graph.transition_scalar_indexing_structure[pos_index],
transition_matrices)
self.sets_of_cims_struct.sets_of_cims[pos_index].build_cims(
state_res_times,
transition_matrices) #TODO potrebbe restituire direttamente l'oggetto setof cims
"""
def compute_parameters_for_node(self, node_id: str):
""" """
Compute the CIMS of the node identified by the label node_id Compute the CIMS of the node identified by the label node_id

@ -1,41 +1,35 @@
import abstract_sample_path as asam
import json_importer as imp import json_importer as imp
import trajectory as tr import trajectory as tr
import structure as st import structure as st
class SamplePath: class SamplePath(asam.AbstractSamplePath):
""" """
Aggregates all the informations about the trajectories, the real structure of the sampled net and variables Aggregates all the informations about the trajectories, the real structure of the sampled net and variables
cardinalites. cardinalites.
Has the task of creating the objects that will contain the mentioned data. Has the task of creating the objects that will contain the mentioned data.
:files_path: the path that contains tha data to be imported
:samples_label: the reference key for the samples in the trajectories
:structure_label: the reference key for the structure of the network data
:variables_label: the reference key for the cardinalites of the nodes data
:time_key: the key used to identify the timestamps in each trajectory
:variables_key: the key used to identify the names of the variables in the net
:importer: the Importer objects that will import ad process data :importer: the Importer objects that will import ad process data
:trajectories: the Trajectory object that will contain all the concatenated trajectories :trajectories: the Trajectory object that will contain all the concatenated trajectories
:structure: the Structure Object that will contain all the structurral infos about the net :structure: the Structure Object that will contain all the structurral infos about the net
:total_variables_count: the number of variables in the net :total_variables_count: the number of variables in the net
""" """
def __init__(self, files_path: str, samples_label: str, structure_label: str, variables_label: str, time_key: str, #def __init__(self, files_path: str, samples_label: str, structure_label: str, variables_label: str, time_key: str,
variables_key: str): #variables_key: str):
self.importer = imp.JsonImporter(files_path, samples_label, structure_label, def __init__(self, importer: imp.JsonImporter):
variables_label, time_key, variables_key) #self.importer =importer
self._trajectories = None super().__init__(importer)
self._structure = None #self._trajectories = None
#self._structure = None
self.total_variables_count = None self.total_variables_count = None
def build_trajectories(self): def build_trajectories(self):
""" """
Builds the Trajectory object that will contain all the trajectories. Builds the Trajectory object that will contain all the trajectories.
Clears all the unsed dataframes in Importer Object Clears all the unused dataframes in Importer Object
Parameters: Parameters:
void void

@ -46,6 +46,16 @@ class SetOfCims:
self.node_states_number], dtype=np.int) self.node_states_number], dtype=np.int)
def build_cims(self, state_res_times: typing.List, transition_matrices: typing.List): def build_cims(self, state_res_times: typing.List, transition_matrices: typing.List):
"""
Build the ConditionalIntensityMatrix object given the state residence times and transitions matrices.
Compute the cim coefficients.
Parameters:
state_res_times: the state residence times matrix
transition_matrices: the transition matrices
Returns:
void
"""
for state_res_time_vector, transition_matrix in zip(state_res_times, transition_matrices): for state_res_time_vector, transition_matrix in zip(state_res_times, transition_matrices):
cim_to_add = cim.ConditionalIntensityMatrix(state_res_time_vector, transition_matrix) cim_to_add = cim.ConditionalIntensityMatrix(state_res_time_vector, transition_matrix)
cim_to_add.compute_cim_coefficients() cim_to_add.compute_cim_coefficients()
@ -54,7 +64,16 @@ class SetOfCims:
self.transition_matrices = None self.transition_matrices = None
self.state_residence_times = None self.state_residence_times = None
def filter_cims_with_mask(self, mask_arr: np.ndarray, comb: typing.List): def filter_cims_with_mask(self, mask_arr: np.ndarray, comb: typing.List) -> np.ndarray:
"""
Filter the cims contained in the array actual_cims given the boolean mask mask_arr and the index comb.
Parameters:
mask_arr: the boolean mask
comb: the indexes of the selected cims
Returns:
Array of ConditionalIntensityMatrix
"""
if mask_arr.size <= 1: if mask_arr.size <= 1:
return self.actual_cims return self.actual_cims
else: else:

@ -13,7 +13,7 @@ class Structure:
:total_variables_number: the total number of variables in the net :total_variables_number: the total number of variables in the net
""" """
def __init__(self, nodes_label_list: ty.List, node_indexes_arr: np.array, nodes_vals_arr: np.array, def __init__(self, nodes_label_list: ty.List, node_indexes_arr: np.ndarray, nodes_vals_arr: np.ndarray,
edges_list: ty.List, total_variables_number: int): edges_list: ty.List, total_variables_number: int):
self._nodes_labels_list = nodes_label_list self._nodes_labels_list = nodes_label_list
self._nodes_indexes_arr = node_indexes_arr self._nodes_indexes_arr = node_indexes_arr
@ -32,36 +32,31 @@ class Structure:
return self._nodes_labels_list return self._nodes_labels_list
@property @property
def nodes_indexes(self): def nodes_indexes(self) -> np.ndarray:
return self._nodes_indexes_arr return self._nodes_indexes_arr
@property @property
def nodes_values(self): def nodes_values(self) -> np.ndarray:
return self._nodes_vals_arr return self._nodes_vals_arr
@property @property
def total_variables_number(self): def total_variables_number(self):
return self._total_variables_number return self._total_variables_number
def get_node_id(self, node_indx: int): def get_node_id(self, node_indx: int) -> str:
return self._nodes_labels_list[node_indx] return self._nodes_labels_list[node_indx]
def get_node_indx(self, node_id: str): def get_node_indx(self, node_id: str) -> int:
pos_indx = self._nodes_labels_list.index(node_id) pos_indx = self._nodes_labels_list.index(node_id)
return self._nodes_indexes_arr[pos_indx] return self._nodes_indexes_arr[pos_indx]
def get_positional_node_indx(self, node_id: str): def get_positional_node_indx(self, node_id: str) -> int:
return self._nodes_labels_list.index(node_id) return self._nodes_labels_list.index(node_id)
def get_states_number(self, node: str): def get_states_number(self, node: str) -> int:
pos_indx = self._nodes_labels_list.index(node) pos_indx = self._nodes_labels_list.index(node)
return self._nodes_vals_arr[pos_indx] return self._nodes_vals_arr[pos_indx]
def get_states_number_by_indx(self, node_indx: int):
#print(self.value_label)
#print("Node indx", node_indx)
return self._nodes_vals_arr[node_indx]
def __repr__(self): def __repr__(self):
return "Variables:\n" + str(self._nodes_labels_list) +"\nValues:\n"+ str(self._nodes_vals_arr) +\ return "Variables:\n" + str(self._nodes_labels_list) +"\nValues:\n"+ str(self._nodes_vals_arr) +\
"\nEdges: \n" + str(self._edges_list) "\nEdges: \n" + str(self._edges_list)

@ -2,10 +2,13 @@
import numpy as np import numpy as np
import itertools import itertools
import networkx as nx import networkx as nx
from networkx.readwrite import json_graph
import json
import typing import typing
from scipy.stats import f as f_dist from scipy.stats import f as f_dist
from scipy.stats import chi2 as chi2_dist from scipy.stats import chi2 as chi2_dist
import sample_path as sp import sample_path as sp
import structure as st import structure as st
import network_graph as ng import network_graph as ng
@ -289,6 +292,22 @@ class StructureEstimator:
total_vars_numb = self.sample_path.total_variables_count total_vars_numb = self.sample_path.total_variables_count
[ctpc_algo(n, total_vars_numb) for n in self.nodes] [ctpc_algo(n, total_vars_numb) for n in self.nodes]
def save_results(self):
"""
Save the estimated Structure to a .json file
Parameters:
void
Returns:
void
"""
res = json_graph.node_link_data(self.complete_graph)
name = self.sample_path.importer.file_path.rsplit('/',1)[-1]
#print(name)
name = 'results_' + name
with open(name, 'w') as f:
json.dump(res, f)
def remove_diagonal_elements(self, matrix): def remove_diagonal_elements(self, matrix):
m = matrix.shape[0] m = matrix.shape[0]

@ -22,7 +22,7 @@ class Trajectory:
self._times = np.array(list_of_columns[0], dtype=np.float) self._times = np.array(list_of_columns[0], dtype=np.float)
@property @property
def trajectory(self): def trajectory(self) -> np.ndarray:
""" """
Parameters: Parameters:
void void
@ -32,7 +32,7 @@ class Trajectory:
return self._actual_trajectory[:, :self.original_cols_number] return self._actual_trajectory[:, :self.original_cols_number]
@property @property
def complete_trajectory(self): def complete_trajectory(self) -> np.ndarray:
""" """
Parameters: Parameters:
void void

@ -1,6 +1,8 @@
import sys import sys
sys.path.append("/Users/Zalum/Desktop/Tesi/CTBN_Project/main_package/classes/") sys.path.append("/Users/Zalum/Desktop/Tesi/CTBN_Project/main_package/classes/")
import unittest import unittest
import os
import glob
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import json_importer as ji import json_importer as ji
@ -13,15 +15,18 @@ import json
class TestJsonImporter(unittest.TestCase): class TestJsonImporter(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
cls.read_files = glob.glob(os.path.join('../data', "*.json"))
def test_init(self): def test_init(self):
path = os.getcwd() j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
j1 = ji.JsonImporter(path, 'samples', 'dyn.str', 'variables', 'Time', 'Name')
self.assertEqual(j1.samples_label, 'samples') self.assertEqual(j1.samples_label, 'samples')
self.assertEqual(j1.structure_label, 'dyn.str') self.assertEqual(j1.structure_label, 'dyn.str')
self.assertEqual(j1.variables_label, 'variables') self.assertEqual(j1.variables_label, 'variables')
self.assertEqual(j1.time_key, 'Time') self.assertEqual(j1.time_key, 'Time')
self.assertEqual(j1.variables_key, 'Name') self.assertEqual(j1.variables_key, 'Name')
self.assertEqual(j1.files_path, path) self.assertEqual(j1.file_path, self.read_files[0])
self.assertFalse(j1.df_samples_list) self.assertFalse(j1.df_samples_list)
self.assertTrue(j1.variables.empty) self.assertTrue(j1.variables.empty)
self.assertTrue(j1.structure.empty) self.assertTrue(j1.structure.empty)
@ -33,6 +38,7 @@ class TestJsonImporter(unittest.TestCase):
with open('data.json', 'w') as f: with open('data.json', 'w') as f:
json.dump(data_set, f) json.dump(data_set, f)
path = os.getcwd() path = os.getcwd()
path = path + '/data.json'
j1 = ji.JsonImporter(path, '', '', '', '', '') j1 = ji.JsonImporter(path, '', '', '', '', '')
imported_data = j1.read_json_file() imported_data = j1.read_json_file()
self.assertTrue(self.ordered(data_set) == self.ordered(imported_data)) self.assertTrue(self.ordered(data_set) == self.ordered(imported_data))
@ -40,11 +46,12 @@ class TestJsonImporter(unittest.TestCase):
def test_read_json_file_not_found(self): def test_read_json_file_not_found(self):
path = os.getcwd() path = os.getcwd()
path = path + '/data.json'
j1 = ji.JsonImporter(path, '', '', '', '', '') j1 = ji.JsonImporter(path, '', '', '', '', '')
self.assertIsNone(j1.read_json_file()) self.assertRaises(FileNotFoundError, j1.read_json_file)
def test_normalize_trajectories(self): def test_normalize_trajectories(self):
j1 = ji.JsonImporter('../data', 'samples', 'dyn.str', 'variables', 'Time', 'Name') j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
raw_data = j1.read_json_file() raw_data = j1.read_json_file()
#print(raw_data) #print(raw_data)
j1.normalize_trajectories(raw_data, 0, j1.samples_label) j1.normalize_trajectories(raw_data, 0, j1.samples_label)
@ -52,17 +59,17 @@ class TestJsonImporter(unittest.TestCase):
self.assertEqual(list(j1.df_samples_list[0].columns.values)[1:], j1.sorter) self.assertEqual(list(j1.df_samples_list[0].columns.values)[1:], j1.sorter)
def test_normalize_trajectories_wrong_indx(self): def test_normalize_trajectories_wrong_indx(self):
j1 = ji.JsonImporter('../data', 'samples', 'dyn.str', 'variables', 'Time', 'Name') j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
raw_data = j1.read_json_file() raw_data = j1.read_json_file()
self.assertRaises(IndexError, j1.normalize_trajectories, raw_data, 474, j1.samples_label) self.assertRaises(IndexError, j1.normalize_trajectories, raw_data, 474, j1.samples_label)
def test_normalize_trajectories_wrong_key(self): def test_normalize_trajectories_wrong_key(self):
j1 = ji.JsonImporter('../data', 'sample', 'dyn.str', 'variables', 'Time', 'Name') j1 = ji.JsonImporter(self.read_files[0], 'sample', 'dyn.str', 'variables', 'Time', 'Name')
raw_data = j1.read_json_file() raw_data = j1.read_json_file()
self.assertRaises(KeyError, j1.normalize_trajectories, raw_data, 0, j1.samples_label) self.assertRaises(KeyError, j1.normalize_trajectories, raw_data, 0, j1.samples_label)
def test_compute_row_delta_single_samples_frame(self): def test_compute_row_delta_single_samples_frame(self):
j1 = ji.JsonImporter('../data', 'samples', 'dyn.str', 'variables', 'Time', 'Name') j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
raw_data = j1.read_json_file() raw_data = j1.read_json_file()
j1.normalize_trajectories(raw_data, 0, j1.samples_label) j1.normalize_trajectories(raw_data, 0, j1.samples_label)
sample_frame = j1.df_samples_list[0] sample_frame = j1.df_samples_list[0]
@ -75,7 +82,7 @@ class TestJsonImporter(unittest.TestCase):
self.assertEqual(sample_frame.shape[0] - 1, new_sample_frame.shape[0]) self.assertEqual(sample_frame.shape[0] - 1, new_sample_frame.shape[0])
def test_compute_row_delta_in_all_frames(self): def test_compute_row_delta_in_all_frames(self):
j1 = ji.JsonImporter('../data', 'samples', 'dyn.str', 'variables', 'Time', 'Name') j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
raw_data = j1.read_json_file() raw_data = j1.read_json_file()
j1.import_trajectories(raw_data) j1.import_trajectories(raw_data)
j1.compute_row_delta_in_all_samples_frames(j1.time_key) j1.compute_row_delta_in_all_samples_frames(j1.time_key)
@ -83,7 +90,7 @@ class TestJsonImporter(unittest.TestCase):
self.assertEqual(list(j1.concatenated_samples.columns.values)[0], j1.time_key) self.assertEqual(list(j1.concatenated_samples.columns.values)[0], j1.time_key)
def test_clear_data_frame_list(self): def test_clear_data_frame_list(self):
j1 = ji.JsonImporter('../data', 'samples', 'dyn.str', 'variables', 'Time', 'Name') j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
raw_data = j1.read_json_file() raw_data = j1.read_json_file()
j1.import_trajectories(raw_data) j1.import_trajectories(raw_data)
j1.compute_row_delta_in_all_samples_frames(j1.time_key) j1.compute_row_delta_in_all_samples_frames(j1.time_key)
@ -96,6 +103,7 @@ class TestJsonImporter(unittest.TestCase):
with open('data.json', 'w') as f: with open('data.json', 'w') as f:
json.dump(data_set, f) json.dump(data_set, f)
path = os.getcwd() path = os.getcwd()
path = path + '/data.json'
j1 = ji.JsonImporter(path, '', '', '', '', '') j1 = ji.JsonImporter(path, '', '', '', '', '')
raw_data = j1.read_json_file() raw_data = j1.read_json_file()
frame = pd.DataFrame(raw_data) frame = pd.DataFrame(raw_data)
@ -108,14 +116,14 @@ class TestJsonImporter(unittest.TestCase):
os.remove('data.json') os.remove('data.json')
def test_import_variables(self): def test_import_variables(self):
j1 = ji.JsonImporter('../data', 'samples', 'dyn.str', 'variables', 'Time', 'Name') j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
sorter = ['X', 'Y', 'Z'] sorter = ['X', 'Y', 'Z']
raw_data = [{'variables':{"Name": ['Z', 'Y', 'X'], "value": [3, 3, 3]}}] raw_data = [{'variables':{"Name": ['Z', 'Y', 'X'], "value": [3, 3, 3]}}]
j1.import_variables(raw_data, sorter) j1.import_variables(raw_data, sorter)
self.assertEqual(list(j1.variables[j1.variables_key]), sorter) self.assertEqual(list(j1.variables[j1.variables_key]), sorter)
def test_import_data(self): def test_import_data(self):
j1 = ji.JsonImporter('../data', 'samples', 'dyn.str', 'variables', 'Time', 'Name') j1 = ji.JsonImporter(self.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
lp = LineProfiler() lp = LineProfiler()
lp_wrapper = lp(j1.import_data) lp_wrapper = lp(j1.import_data)

@ -1,4 +1,6 @@
import unittest import unittest
import glob
import os
import networkx as nx import networkx as nx
import numpy as np import numpy as np
import itertools import itertools
@ -6,13 +8,16 @@ from line_profiler import LineProfiler
import sample_path as sp import sample_path as sp
import network_graph as ng import network_graph as ng
import json_importer as ji
class TestNetworkGraph(unittest.TestCase): class TestNetworkGraph(unittest.TestCase):
@classmethod @classmethod
def setUpClass(cls): def setUpClass(cls):
cls.s1 = sp.SamplePath('../data', 'samples', 'dyn.str', 'variables', 'Time', 'Name') cls.read_files = glob.glob(os.path.join('../data', "*.json"))
cls.importer = ji.JsonImporter(cls.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
cls.s1 = sp.SamplePath(cls.importer)
cls.s1.build_trajectories() cls.s1.build_trajectories()
cls.s1.build_structure() cls.s1.build_structure()

@ -1,20 +1,23 @@
import unittest import unittest
import numpy as np import numpy as np
import glob
import os
from line_profiler import LineProfiler from line_profiler import LineProfiler
import network_graph as ng import network_graph as ng
import sample_path as sp import sample_path as sp
import set_of_cims as sofc import set_of_cims as sofc
import sets_of_cims_container as scc
import parameters_estimator as pe import parameters_estimator as pe
import json_importer as ji import json_importer as ji
#TODO bisogna trovare un modo per testare i metodi che stimano i tempi e le transizioni per i singoli nodi
class TestParametersEstimatior(unittest.TestCase): class TestParametersEstimatior(unittest.TestCase):
@classmethod @classmethod
def setUpClass(cls) -> None: def setUpClass(cls) -> None:
cls.s1 = sp.SamplePath('../data', 'samples', 'dyn.str', 'variables', 'Time', 'Name') cls.read_files = glob.glob(os.path.join('../data', "*.json"))
cls.importer = ji.JsonImporter(cls.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
cls.s1 = sp.SamplePath(cls.importer)
cls.s1.build_trajectories() cls.s1.build_trajectories()
cls.s1.build_structure() cls.s1.build_structure()
cls.g1 = ng.NetworkGraph(cls.s1.structure) cls.g1 = ng.NetworkGraph(cls.s1.structure)
@ -41,12 +44,12 @@ class TestParametersEstimatior(unittest.TestCase):
sofc1 = p1.compute_parameters_for_node(node) sofc1 = p1.compute_parameters_for_node(node)
sampled_cims = self.aux_import_sampled_cims('dyn.cims') sampled_cims = self.aux_import_sampled_cims('dyn.cims')
sc = list(sampled_cims.values()) sc = list(sampled_cims.values())
print(sc[indx]) #print(sc[indx])
self.equality_of_cims_of_node(sc[indx], sofc1.actual_cims) self.equality_of_cims_of_node(sc[indx], sofc1.actual_cims)
def equality_of_cims_of_node(self, sampled_cims, estimated_cims): def equality_of_cims_of_node(self, sampled_cims, estimated_cims):
#print(sampled_cims) #print(sampled_cims)
print(estimated_cims) #print(estimated_cims)
self.assertEqual(len(sampled_cims), len(estimated_cims)) self.assertEqual(len(sampled_cims), len(estimated_cims))
for c1, c2 in zip(sampled_cims, estimated_cims): for c1, c2 in zip(sampled_cims, estimated_cims):
self.cim_equality_test(c1, c2.cim) self.cim_equality_test(c1, c2.cim)
@ -56,7 +59,7 @@ class TestParametersEstimatior(unittest.TestCase):
self.assertTrue(np.all(np.isclose(r1, r2, 1e-01, 1e-01) == True)) self.assertTrue(np.all(np.isclose(r1, r2, 1e-01, 1e-01) == True))
def aux_import_sampled_cims(self, cims_label): def aux_import_sampled_cims(self, cims_label):
i1 = ji.JsonImporter('../data', '', '', '', '', '') i1 = ji.JsonImporter(self.read_files[0], '', '', '', '', '')
raw_data = i1.read_json_file() raw_data = i1.read_json_file()
return i1.import_sampled_cims(raw_data, 0, cims_label) return i1.import_sampled_cims(raw_data, 0, cims_label)

@ -1,4 +1,7 @@
import unittest import unittest
import glob
import os
import json_importer as ji
import sample_path as sp import sample_path as sp
import trajectory as tr import trajectory as tr
import structure as st import structure as st
@ -6,8 +9,13 @@ import structure as st
class TestSamplePath(unittest.TestCase): class TestSamplePath(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
cls.read_files = glob.glob(os.path.join('../data', "*.json"))
cls.importer = ji.JsonImporter(cls.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
def test_init(self): def test_init(self):
s1 = sp.SamplePath('../data', 'samples', 'dyn.str', 'variables', 'Time', 'Name') s1 = sp.SamplePath(self.importer)
s1.build_trajectories() s1.build_trajectories()
self.assertIsNotNone(s1.trajectories) self.assertIsNotNone(s1.trajectories)
self.assertIsInstance(s1.trajectories, tr.Trajectory) self.assertIsInstance(s1.trajectories, tr.Trajectory)

@ -1,13 +1,8 @@
import sys import sys
sys.path.append("/Users/Zalum/Desktop/Tesi/CTBN_Project/main_package/classes/") sys.path.append("/Users/Zalum/Desktop/Tesi/CTBN_Project/main_package/classes/")
import unittest import unittest
import pandas as pd
import numpy as np import numpy as np
import sample_path as sp
import structure as st import structure as st
import network_graph as ng
import parameters_estimator as pe
class TestStructure(unittest.TestCase): class TestStructure(unittest.TestCase):
@ -22,7 +17,9 @@ class TestStructure(unittest.TestCase):
def test_init(self): def test_init(self):
s1 = st.Structure(self.labels, self.indxs, self.vals, self.edges, self.vars_numb) s1 = st.Structure(self.labels, self.indxs, self.vals, self.edges, self.vars_numb)
self.assertListEqual(self.labels,s1.nodes_labels) self.assertListEqual(self.labels,s1.nodes_labels)
self.assertIsInstance(s1.nodes_indexes, np.ndarray)
self.assertTrue(np.array_equal(self.indxs, s1.nodes_indexes)) self.assertTrue(np.array_equal(self.indxs, s1.nodes_indexes))
self.assertIsInstance(s1.nodes_values, np.ndarray)
self.assertTrue(np.array_equal(self.vals, s1.nodes_values)) self.assertTrue(np.array_equal(self.vals, s1.nodes_values))
self.assertListEqual(self.edges, s1.edges) self.assertListEqual(self.edges, s1.edges)
self.assertEqual(self.vars_numb, s1.total_variables_number) self.assertEqual(self.vars_numb, s1.total_variables_number)
@ -70,62 +67,6 @@ class TestStructure(unittest.TestCase):
s1 = st.Structure(l2, i2, v2, e2, n2) s1 = st.Structure(l2, i2, v2, e2, n2)
for val, node in zip(v2, l2): for val, node in zip(v2, l2):
self.assertEqual(val, s1.get_states_number(node)) self.assertEqual(val, s1.get_states_number(node))
#TODO FORSE QUESTO TEST NON serve verificare se questo metodo sia davvero utile
"""def test_get_states_numeber_by_indx(self):
s1 = st.Structure(self.structure_frame, self.variables_frame, len(self.variables_frame.index))
for indx, row in self.variables_frame.iterrows():
self.assertEqual(row[1], s1.get_states_number_by_indx(indx))
def test_new_init(self):
#self.variables_frame.drop(self.variables_frame[(self.variables_frame['Name'] == 'Y')].index, inplace=True)
labels = self.variables_frame['Name'].to_list()
indxs = self.variables_frame.index.to_numpy()
vals = self.variables_frame['Value'].to_numpy()
edges = list(self.structure_frame.to_records(index=False))
print(labels)
print(indxs)
print(vals)
print(edges)
s1 = st.Structure(labels, indxs, vals, edges, len(self.variables_frame.index))
#print(s1.get_node_id(2))
print(s1.get_node_indx('Z'))
print(s1.get_positional_node_indx('Z'))
print(s1.get_states_number('Z'))
print(s1.get_states_number_by_indx(1))
[CIM:
[[-4.82318981 1.18421625 3.63997346]
[ 4.44726473 -9.20141291 4.755239 ]
[ 2.93950444 4.36292948 -7.30152554]], CIM:
[[-6.0336893 1.69212904 4.34235011]
[ 3.32692085 -5.03977237 1.7137923 ]
[ 3.65519241 3.81402509 -7.46819716]], CIM:
[[-6.78778897 1.98559721 4.80306557]
[ 1.23811008 -6.26366842 5.0265376 ]
[ 3.02720526 4.0256821 -7.05222539]]]
array([ 3, 9, 27])
array([3, 9])
array([1, 2])
array([4, 1, 2])
sp1 = sp.SamplePath('../data', 'samples', 'dyn.str', 'variables', 'Time', 'Name')
sp1.build_trajectories()
sp1.build_structure()
st1 = st.Structure(['X','Y','Z'], np.array([0,1,2]), np.array([3,3,3]), [('Z','X'),('Y', 'X')], sp1.total_variables_count)
g1 = ng.NetworkGraph(st1)
g1.init_graph()
print("M Vector",g1.transition_scalar_indexing_structure)
print("Time Vecotr",g1.time_scalar_indexing_strucure)
print("Time Filter",g1.time_filtering)
print("M Filter",g1.transition_filtering)
print(g1.p_combs)
print("AGG STR", g1.aggregated_info_about_nodes_parents)
p1 = pe.ParametersEstimator(sp1,g1)
p1.init_sets_cims_container()
p1.compute_parameters_for_node('X')
#print(p1.sets_of_cims_struct.get_cims_of_node(0,[1,0]))
print(p1.sets_of_cims_struct.sets_of_cims[1].actual_cims)
#print(p1.sets_of_cims_struct.sets_of_cims[2].get_cims_where_parents_except_last_are_in_state(np.array([0])))
#print(p1.sets_of_cims_struct.sets_of_cims[0].p_combs)"""
if __name__ == '__main__': if __name__ == '__main__':

@ -1,9 +1,13 @@
import unittest import unittest
import numpy as np import numpy as np
import networkx as nx import networkx as nx
import glob
import os
import math import math
from line_profiler import LineProfiler from line_profiler import LineProfiler
import psutil
import json_importer as ji
import sample_path as sp import sample_path as sp
import structure_estimator as se import structure_estimator as se
import cache as ch import cache as ch
@ -13,7 +17,9 @@ class TestStructureEstimator(unittest.TestCase):
@classmethod @classmethod
def setUpClass(cls) -> None: def setUpClass(cls) -> None:
cls.s1 = sp.SamplePath('../data', 'samples', 'dyn.str', 'variables', 'Time', 'Name') cls.read_files = glob.glob(os.path.join('../data', "*.json"))
cls.importer = ji.JsonImporter(cls.read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name')
cls.s1 = sp.SamplePath(cls.importer)
cls.s1.build_trajectories() cls.s1.build_trajectories()
cls.s1.build_structure() cls.s1.build_structure()
@ -58,7 +64,7 @@ class TestStructureEstimator(unittest.TestCase):
for sset in sets2: for sset in sets2:
self.assertFalse(node in sset) self.assertFalse(node in sset)
def test_one_iteration(self): def test_time(self):
se1 = se.StructureEstimator(self.s1, 0.1, 0.1) se1 = se.StructureEstimator(self.s1, 0.1, 0.1)
lp = LineProfiler() lp = LineProfiler()
lp.add_function(se1.complete_test) lp.add_function(se1.complete_test)
@ -76,8 +82,16 @@ class TestStructureEstimator(unittest.TestCase):
for ed in se1.complete_graph.edges: for ed in se1.complete_graph.edges:
if not(ed in tuples_edges): if not(ed in tuples_edges):
spurious_edges.append(ed) spurious_edges.append(ed)
print("Spurious Edges:",spurious_edges) print("Spurious Edges:",spurious_edges)
se1.save_results()
def test_memory(self):
se1 = se.StructureEstimator(self.s1, 0.1, 0.1)
se1.ctpc_algorithm()
current_process = psutil.Process(os.getpid())
mem = current_process.memory_info().rss
print("Average Memory Usage in MB:", mem / 10**6)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()