|
|
|
@ -19,7 +19,7 @@ class StructureEstimator: |
|
|
|
|
:sample_path: the sample_path object containing the trajectories and the real structure |
|
|
|
|
:exp_test_sign: the significance level for the exponential Hp test |
|
|
|
|
:chi_test_alfa: the significance level for the chi Hp test |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:nodes: the nodes labels |
|
|
|
|
:nodes_vals: the nodes cardinalities |
|
|
|
|
:nodes_indxs: the nodes indexes |
|
|
|
@ -30,11 +30,8 @@ class StructureEstimator: |
|
|
|
|
def __init__(self, sample_path: sp.SamplePath, exp_test_alfa: float, chi_test_alfa: float): |
|
|
|
|
self.sample_path = sample_path |
|
|
|
|
self.nodes = np.array(self.sample_path.structure.nodes_labels) |
|
|
|
|
#print("NODES", self.nodes) |
|
|
|
|
self.nodes_vals = self.sample_path.structure.nodes_values |
|
|
|
|
self.nodes_indxs = self.sample_path.structure.nodes_indexes |
|
|
|
|
#self.nodes_indxs = np.array(range(0,4)) |
|
|
|
|
#print("INDXS", self.nodes_indxs) |
|
|
|
|
self.complete_graph = self.build_complete_graph(self.sample_path.structure.nodes_labels) |
|
|
|
|
self.exp_test_sign = exp_test_alfa |
|
|
|
|
self.chi_test_alfa = chi_test_alfa |
|
|
|
@ -81,12 +78,6 @@ class StructureEstimator: |
|
|
|
|
g1 = ng.NetworkGraph(s1) |
|
|
|
|
#g1.init_graph() |
|
|
|
|
g1.fast_init(test_child) |
|
|
|
|
#print("M Vector", g1.transition_scalar_indexing_structure) |
|
|
|
|
#print("Time Vecotr", g1.time_scalar_indexing_strucure) |
|
|
|
|
#print("Time Filter", g1.time_filtering) |
|
|
|
|
#print("M Filter", g1.transition_filtering) |
|
|
|
|
#print("G1 NODES", g1.get_nodes()) |
|
|
|
|
#print("G1 Edges", g1.get_edges()) |
|
|
|
|
p1 = pe.ParametersEstimator(self.sample_path, g1) |
|
|
|
|
#p1.init_sets_cims_container() |
|
|
|
|
p1.fast_init(test_child) |
|
|
|
@ -130,12 +121,6 @@ class StructureEstimator: |
|
|
|
|
g2 = ng.NetworkGraph(s2) |
|
|
|
|
#g2.init_graph() |
|
|
|
|
g2.fast_init(test_child) |
|
|
|
|
#print("M Vector", g2.transition_scalar_indexing_structure) |
|
|
|
|
#print("Time Vecotr", g2.time_scalar_indexing_strucure) |
|
|
|
|
#print("Time Filter", g2.time_filtering) |
|
|
|
|
#print("M Filter", g2.transition_filtering) |
|
|
|
|
#print("G2 Nodes", g2.get_nodes()) |
|
|
|
|
#print("G2 Edges", g2.get_edges()) |
|
|
|
|
p2 = pe.ParametersEstimator(self.sample_path, g2) |
|
|
|
|
#p2.init_sets_cims_container() |
|
|
|
|
p2.fast_init(test_child) |
|
|
|
@ -144,10 +129,6 @@ class StructureEstimator: |
|
|
|
|
#if p_set: |
|
|
|
|
#set_p_set = set(p_set) |
|
|
|
|
self.cache.put(set(p_set), sofc2) |
|
|
|
|
#start = 0 |
|
|
|
|
#end = self.sample_path.structure.get_states_number(test_parent) |
|
|
|
|
#print("SOFC2", sofc2.actual_cims) |
|
|
|
|
#print("Sofc2 pcomb", sofc2.p_combs) |
|
|
|
|
for cim1, p_comb in zip(sofc1.actual_cims, sofc1.p_combs): |
|
|
|
|
#print("GETTING THIS P COMB", p_comb) |
|
|
|
|
#if len(parent_set) > 1: |
|
|
|
@ -260,9 +241,5 @@ class StructureEstimator: |
|
|
|
|
def ctpc_algorithm(self): |
|
|
|
|
ctpc_algo = self.one_iteration_of_CTPC_algorithm |
|
|
|
|
total_vars_numb = self.sample_path.total_variables_count |
|
|
|
|
#for node_id in self.sample_path.structure.list_of_nodes_labels(): |
|
|
|
|
#print("TESTING VAR:", node_id) |
|
|
|
|
#self.one_iteration_of_CTPC_algorithm(node_id) |
|
|
|
|
#print(self.complete_graph_frame) |
|
|
|
|
[ctpc_algo(n, total_vars_numb) for n in self.nodes] |
|
|
|
|
|
|
|
|
|