parent
8c0a192ff2
commit
34dbbd8bf0
@ -0,0 +1,125 @@ |
|||||||
|
PyCTBN |
||||||
|
====== |
||||||
|
|
||||||
|
A Continuous Time Bayesian Networks Library |
||||||
|
|
||||||
|
Installation/Usage |
||||||
|
******************* |
||||||
|
Download the release in .tar.gz or .whl format and simply use pip install to install it:: |
||||||
|
|
||||||
|
$ pip install PyCTBN-1.0.tar.gz |
||||||
|
|
||||||
|
Documentation |
||||||
|
************* |
||||||
|
Please refer to https://philipmartini.github.io/PyCTBN/ for the full project documentation. |
||||||
|
|
||||||
|
Implementing your own data importer |
||||||
|
*********************************** |
||||||
|
.. code-block:: python |
||||||
|
|
||||||
|
"""This example demonstrates the implementation of a simple data importer the extends the class abstract importer to import data in csv format. |
||||||
|
The net in exam has three ternary nodes and no prior net structure. |
||||||
|
""" |
||||||
|
|
||||||
|
from PyCTBN import AbstractImporter |
||||||
|
|
||||||
|
class CSVImporter(AbstractImporter): |
||||||
|
|
||||||
|
def __init__(self, file_path): |
||||||
|
self._df_samples_list = None |
||||||
|
super(CSVImporter, self).__init__(file_path) |
||||||
|
|
||||||
|
def import_data(self): |
||||||
|
self.read_csv_file() |
||||||
|
self._sorter = self.build_sorter(self._df_samples_list[0]) |
||||||
|
self.import_variables() |
||||||
|
self.compute_row_delta_in_all_samples_frames(self._df_samples_list) |
||||||
|
|
||||||
|
def read_csv_file(self): |
||||||
|
df = pd.read_csv(self._file_path) |
||||||
|
df.drop(df.columns[[0]], axis=1, inplace=True) |
||||||
|
self._df_samples_list = [df] |
||||||
|
|
||||||
|
def import_variables(self): |
||||||
|
values_list = [3 for var in self._sorter] |
||||||
|
# initialize dict of lists |
||||||
|
data = {'Name':self._sorter, 'Value':values_list} |
||||||
|
# Create the pandas DataFrame |
||||||
|
self._df_variables = pd.DataFrame(data) |
||||||
|
|
||||||
|
def build_sorter(self, sample_frame: pd.DataFrame) -> typing.List: |
||||||
|
return list(sample_frame.columns)[1:] |
||||||
|
|
||||||
|
def dataset_id(self) -> object: |
||||||
|
pass |
||||||
|
|
||||||
|
Parameters Estimation Example |
||||||
|
***************************** |
||||||
|
|
||||||
|
.. code-block:: python |
||||||
|
|
||||||
|
from PyCTBN import JsonImporter |
||||||
|
from PyCTBN import SamplePath |
||||||
|
from PyCTBN import NetworkGraph |
||||||
|
from PyCTBN import ParametersEstimator |
||||||
|
|
||||||
|
|
||||||
|
def main(): |
||||||
|
read_files = glob.glob(os.path.join('./data', "*.json")) #Take all json files in this dir |
||||||
|
#import data |
||||||
|
importer = JsonImporter(read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name') |
||||||
|
importer.import_data(0) |
||||||
|
#Create a SamplePath Obj passing an already filled AbstractImporter object |
||||||
|
s1 = SamplePath(importer) |
||||||
|
#Build The trajectries and the structural infos |
||||||
|
s1.build_trajectories() |
||||||
|
s1.build_structure() |
||||||
|
print(s1.structure.edges) |
||||||
|
print(s1.structure.nodes_values) |
||||||
|
#From The Structure Object build the Graph |
||||||
|
g = NetworkGraph(s1.structure) |
||||||
|
#Select a node you want to estimate the parameters |
||||||
|
node = g.nodes[2] |
||||||
|
print("Node", node) |
||||||
|
#Init the _graph specifically for THIS node |
||||||
|
g.fast_init(node) |
||||||
|
#Use SamplePath and Grpah to create a ParametersEstimator Object |
||||||
|
p1 = ParametersEstimator(s1.trajectories, g) |
||||||
|
#Init the peEst specifically for THIS node |
||||||
|
p1.fast_init(node) |
||||||
|
#Compute the parameters |
||||||
|
sofc1 = p1.compute_parameters_for_node(node) |
||||||
|
#The est CIMS are inside the resultant SetOfCIms Obj |
||||||
|
print(sofc1.actual_cims) |
||||||
|
|
||||||
|
Structure Estimation Example |
||||||
|
**************************** |
||||||
|
|
||||||
|
.. code-block:: python |
||||||
|
|
||||||
|
from PyCTBN import JsonImporter |
||||||
|
from PyCTBN import SamplePath |
||||||
|
from PyCTBN import StructureEstimator |
||||||
|
|
||||||
|
def structure_estimation_example(): |
||||||
|
|
||||||
|
# read the json files in ./data path |
||||||
|
read_files = glob.glob(os.path.join('./data', "*.json")) |
||||||
|
# initialize a JsonImporter object for the first file |
||||||
|
importer = JsonImporter(read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name') |
||||||
|
# import the data at index 0 of the outer json array |
||||||
|
importer.import_data(0) |
||||||
|
# construct a SamplePath Object passing a filled AbstractImporter |
||||||
|
s1 = SamplePath(importer) |
||||||
|
# build the trajectories |
||||||
|
s1.build_trajectories() |
||||||
|
# build the real structure |
||||||
|
s1.build_structure() |
||||||
|
# construct a StructureEstimator object |
||||||
|
se1 = StructureEstimator(s1, 0.1, 0.1) |
||||||
|
# call the ctpc algorithm |
||||||
|
se1.ctpc_algorithm() |
||||||
|
# the adjacency matrix of the estimated structure |
||||||
|
print(se1.adjacency_matrix()) |
||||||
|
# save results to a json file |
||||||
|
se1.save_results() |
Reference in new issue