1
0
Fork 0

Merge pull request #7 from pietroepis/patch-1

Update README.rst
master
AlessandroBregoli 3 years ago committed by GitHub
commit 18cf6c55f1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 53
      README.rst

@ -343,3 +343,56 @@ Score based estimation with Tabu Search and Data Augmentation
# ...or save it also in a graphical model fashion
# (remember to specify the path AND the .png extension)
se1.save_plot_estimated_structure_graph('./result0.png')
Network graph and parameters generation, trajectory sampling, data export
**************************************************************
| This example shows how to randomically generate a CTBN, that means both the graph and the CIMS, taking as input
| the list of variables labels and their related cardinality. The whole procedure is managed by NetworkGenerator,
| respectively with the generate_graph method, that allows to define the expected density of the graph, and
| generate_cims method, that takes as input the range in which the parameters must be included.
| Afterwards, the example shows how to sample a trajectory over the previously generated network, through the
| CTBN_Sample method and setting a fixed number of transitions equal to 30000.
| The output data, made up by network structure, cims and trajectory, are then saved on a JSON file by
| exploiting the functions of JSONExporter class.
| To prove the simplicity of interaction among the modules, the example eventually reads the file and computes
| the estimation of the structure by using a ConstraintBased approach.
.. code-block:: python
from PyCTBN.PyCTBN.structure_graph.trajectory_generator import TrajectoryGenerator
from PyCTBN.PyCTBN.structure_graph.network_generator import NetworkGenerator
from PyCTBN.PyCTBN.utility.json_importer import JsonImporter
from PyCTBN.PyCTBN.utility.json_exporter import JsonExporter
from PyCTBN.PyCTBN.structure_graph.sample_path import SamplePath
from PyCTBN.PyCTBN.estimators.structure_constraint_based_estimator import StructureConstraintBasedEstimator
def main():
# Network Generation
labels = ["X", "Y", "Z"]
card = 3
vals = [card for l in labels]
cim_min = 1
cim_max = 3
ng = NetworkGenerator(labels, vals)
ng.generate_graph(0.3)
ng.generate_cims(cim_min, cim_max)
# Trajectory Generation
e1 = JsonExporter(ng.variables, ng.dyn_str, ng.cims)
tg = TrajectoryGenerator(variables = ng.variables, dyn_str = ng.dyn_str, dyn_cims = ng.cims)
sigma = tg.CTBN_Sample(max_tr = 30000)
e1.add_trajectory(sigma)
e1.out_file("example.json")
# Network Estimation (Constraint Based)
importer = JsonImporter(file_path = "example.json", samples_label = "samples",
structure_label = "dyn.str", variables_label = "variables",
cims_label = "dyn.cims", time_key = "Time",
variables_key = "Name")
importer.import_data(0)
s1 = SamplePath(importer=importer)
s1.build_trajectories()
s1.build_structure()
se1 = StructureConstraintBasedEstimator(sample_path=s1, exp_test_alfa=0.1, chi_test_alfa=0.1,
known_edges=[], thumb_threshold=25)
edges = se1.estimate_structure(True)