1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/classes/structure_graph/network_graph.py

294 lines
12 KiB

4 years ago
import typing
import networkx as nx
import numpy as np
from .structure import Structure
class NetworkGraph(object):
"""Abstracts the infos contained in the Structure class in the form of a directed graph.
Has the task of creating all the necessary filtering and indexing structures for parameters estimation
:param graph_struct: the ``Structure`` object from which infos about the net will be extracted
:type graph_struct: Structure
:_graph: directed graph
:_aggregated_info_about_nodes_parents: a structure that contains all the necessary infos
about every parents of the node of which all the indexing and filtering structures will be constructed.
:_time_scalar_indexing_structure: the indexing structure for state res time estimation
:_transition_scalar_indexing_structure: the indexing structure for transition computation
:_time_filtering: the columns filtering structure used in the computation of the state res times
:_transition_filtering: the columns filtering structure used in the computation of the transition
from one state to another
:_p_combs_structure: all the possible parents states combination for the node of interest
"""
def __init__(self, graph_struct: Structure):
"""Constructor Method
"""
self._graph_struct = graph_struct
self._graph = nx.DiGraph()
self._aggregated_info_about_nodes_parents = None
4 years ago
self._time_scalar_indexing_structure = None
self._transition_scalar_indexing_structure = None
self._time_filtering = None
self._transition_filtering = None
self._p_combs_structure = None
def init_graph(self):
self.add_nodes(self._nodes_labels)
self.add_edges(self.graph_struct.edges)
self.aggregated_info_about_nodes_parents = self.get_ord_set_of_par_of_all_nodes()
self._fancy_indexing = self.build_fancy_indexing_structure(0)
4 years ago
self.build_scalar_indexing_structures()
self.build_time_columns_filtering_structure()
self.build_transition_columns_filtering_structure()
self._p_combs_structure = self.build_p_combs_structure()
def fast_init(self, node_id: str) -> None:
"""Initializes all the necessary structures for parameters estimation of the node identified by the label
node_id
:param node_id: the label of the node
:type node_id: string
"""
self.add_nodes(self._graph_struct.nodes_labels)
self.add_edges(self._graph_struct.edges)
self._aggregated_info_about_nodes_parents = self.get_ordered_by_indx_set_of_parents(node_id)
p_indxs = self._aggregated_info_about_nodes_parents[1]
p_vals = self._aggregated_info_about_nodes_parents[2]
node_states = self.get_states_number(node_id)
node_indx = self.get_node_indx(node_id)
cols_number = self._graph_struct.total_variables_number
self._time_scalar_indexing_structure = NetworkGraph.\
build_time_scalar_indexing_structure_for_a_node(node_states, p_vals)
self._transition_scalar_indexing_structure = NetworkGraph.\
build_transition_scalar_indexing_structure_for_a_node(node_states, p_vals)
self._time_filtering = NetworkGraph.build_time_columns_filtering_for_a_node(node_indx, p_indxs)
self._transition_filtering = NetworkGraph.build_transition_filtering_for_a_node(node_indx, p_indxs, cols_number)
self._p_combs_structure = NetworkGraph.build_p_comb_structure_for_a_node(p_vals)
def add_nodes(self, list_of_nodes: typing.List) -> None:
"""Adds the nodes to the ``_graph`` contained in the list of nodes ``list_of_nodes``.
Sets all the properties that identify a nodes (index, positional index, cardinality)
:param list_of_nodes: the nodes to add to ``_graph``
:type list_of_nodes: List
"""
nodes_indxs = self._graph_struct.nodes_indexes
nodes_vals = self._graph_struct.nodes_values
4 years ago
pos = 0
for id, node_indx, node_val in zip(list_of_nodes, nodes_indxs, nodes_vals):
self._graph.add_node(id, indx=node_indx, val=node_val, pos_indx=pos)
4 years ago
pos += 1
def has_edge(self,edge:tuple)-> bool:
"""
Check if the graph contains a specific edge
Parameters:
edge: a tuple that rappresents the edge
Returns:
bool
"""
return self._graph.has_edge(edge[0],edge[1])
def add_edges(self, list_of_edges: typing.List) -> None:
"""Add the edges to the ``_graph`` contained in the list ``list_of_edges``.
:param list_of_edges: the list containing of tuples containing the edges
:type list_of_edges: List
"""
self._graph.add_edges_from(list_of_edges)
def remove_node(self, node_id: str) -> None:
"""Remove the node ``node_id`` from all the class members.
Initialize all the filtering/indexing structures.
"""
self._graph.remove_node(node_id)
self._graph_struct.remove_node(node_id)
self.clear_indexing_filtering_structures()
def clear_indexing_filtering_structures(self) -> None:
"""Initialize all the filtering/indexing structures.
"""
self._aggregated_info_about_nodes_parents = None
self._time_scalar_indexing_structure = None
self._transition_scalar_indexing_structure = None
self._time_filtering = None
self._transition_filtering = None
self._p_combs_structure = None
def get_ordered_by_indx_set_of_parents(self, node: str) -> typing.Tuple:
"""Builds the aggregated structure that holds all the infos relative to the parent set of the node, namely
(parents_labels, parents_indexes, parents_cardinalities).
:param node: the label of the node
:type node: string
:return: a tuple containing all the parent set infos
:rtype: Tuple
"""
parents = self.get_parents_by_id(node)
nodes = self._graph_struct.nodes_labels
d = {v: i for i, v in enumerate(nodes)}
sorted_parents = sorted(parents, key=lambda v: d[v])
get_node_indx = self.get_node_indx
p_indxes = [get_node_indx(node) for node in sorted_parents]
p_values = [self.get_states_number(node) for node in sorted_parents]
return sorted_parents, p_indxes, p_values
def remove_edges(self, list_of_edges: typing.List) -> None:
"""Remove the edges to the graph contained in the list list_of_edges.
:param list_of_edges: The edges to remove from the graph
:type list_of_edges: List
"""
self._graph.remove_edges_from(list_of_edges)
@staticmethod
def build_time_scalar_indexing_structure_for_a_node(node_states: int,
parents_vals: typing.List) -> np.ndarray:
"""Builds an indexing structure for the computation of state residence times values.
:param node_states: the node cardinality
:type node_states: int
:param parents_vals: the caridinalites of the node's parents
:type parents_vals: List
:return: The time indexing structure
:rtype: numpy.ndArray
"""
T_vector = np.array([node_states])
T_vector = np.append(T_vector, parents_vals)
T_vector = T_vector.cumprod().astype(np.int)
return T_vector
@staticmethod
def build_transition_scalar_indexing_structure_for_a_node(node_states_number: int, parents_vals: typing.List) \
-> np.ndarray:
"""Builds an indexing structure for the computation of state transitions values.
:param node_states_number: the node cardinality
:type node_states_number: int
:param parents_vals: the caridinalites of the node's parents
:type parents_vals: List
:return: The transition indexing structure
:rtype: numpy.ndArray
"""
M_vector = np.array([node_states_number,
node_states_number])
M_vector = np.append(M_vector, parents_vals)
M_vector = M_vector.cumprod().astype(np.int)
return M_vector
@staticmethod
def build_time_columns_filtering_for_a_node(node_indx: int, p_indxs: typing.List) -> np.ndarray:
"""
Builds the necessary structure to filter the desired columns indicated by ``node_indx`` and ``p_indxs``
in the dataset.
This structute will be used in the computation of the state res times.
:param node_indx: the index of the node
:type node_indx: int
:param p_indxs: the indexes of the node's parents
:type p_indxs: List
:return: The filtering structure for times estimation
:rtype: numpy.ndArray
"""
return np.append(np.array([node_indx], dtype=np.int), p_indxs).astype(np.int)
@staticmethod
def build_transition_filtering_for_a_node(node_indx: int, p_indxs: typing.List, nodes_number: int) \
-> np.ndarray:
"""Builds the necessary structure to filter the desired columns indicated by ``node_indx`` and ``p_indxs``
in the dataset.
This structure will be used in the computation of the state transitions values.
:param node_indx: the index of the node
:type node_indx: int
:param p_indxs: the indexes of the node's parents
:type p_indxs: List
:param nodes_number: the total number of nodes in the dataset
:type nodes_number: int
:return: The filtering structure for transitions estimation
:rtype: numpy.ndArray
"""
return np.array([node_indx + nodes_number, node_indx, *p_indxs], dtype=np.int)
@staticmethod
def build_p_comb_structure_for_a_node(parents_values: typing.List) -> np.ndarray:
"""
Builds the combinatorial structure that contains the combinations of all the values contained in
``parents_values``.
:param parents_values: the cardinalities of the nodes
:type parents_values: List
:return: A numpy matrix containing a grid of the combinations
:rtype: numpy.ndArray
"""
tmp = []
for val in parents_values:
tmp.append([x for x in range(val)])
if len(parents_values) > 0:
parents_comb = np.array(np.meshgrid(*tmp)).T.reshape(-1, len(parents_values))
if len(parents_values) > 1:
tmp_comb = parents_comb[:, 1].copy()
parents_comb[:, 1] = parents_comb[:, 0].copy()
parents_comb[:, 0] = tmp_comb
else:
parents_comb = np.array([[]], dtype=np.int)
return parents_comb
def get_parents_by_id(self, node_id) -> typing.List:
"""Returns a list of labels of the parents of the node ``node_id``
:param node_id: the node label
:type node_id: string
:return: a List of labels of the parents
:rtype: List
"""
return list(self._graph.predecessors(node_id))
def get_states_number(self, node_id) -> int:
return self._graph.nodes[node_id]['val']
def get_node_indx(self, node_id) -> int:
return nx.get_node_attributes(self._graph, 'indx')[node_id]
def get_positional_node_indx(self, node_id) -> int:
return self._graph.nodes[node_id]['pos_indx']
4 years ago
@property
def nodes(self) -> typing.List:
return self._graph_struct.nodes_labels
@property
def edges(self) -> typing.List:
return list(self._graph.edges)
@property
def nodes_indexes(self) -> np.ndarray:
return self._graph_struct.nodes_indexes
@property
def nodes_values(self) -> np.ndarray:
return self._graph_struct.nodes_values
@property
def time_scalar_indexing_strucure(self) -> np.ndarray:
return self._time_scalar_indexing_structure
@property
def time_filtering(self) -> np.ndarray:
return self._time_filtering
@property
def transition_scalar_indexing_structure(self) -> np.ndarray:
return self._transition_scalar_indexing_structure
@property
def transition_filtering(self) -> np.ndarray:
return self._transition_filtering
@property
def p_combs(self) -> np.ndarray:
return self._p_combs_structure