import typing import networkx as nx import numpy as np from .structure import Structure class NetworkGraph(object): """Abstracts the infos contained in the Structure class in the form of a directed graph. Has the task of creating all the necessary filtering and indexing structures for parameters estimation :param graph_struct: the ``Structure`` object from which infos about the net will be extracted :type graph_struct: Structure :_graph: directed graph :_aggregated_info_about_nodes_parents: a structure that contains all the necessary infos about every parents of the node of which all the indexing and filtering structures will be constructed. :_time_scalar_indexing_structure: the indexing structure for state res time estimation :_transition_scalar_indexing_structure: the indexing structure for transition computation :_time_filtering: the columns filtering structure used in the computation of the state res times :_transition_filtering: the columns filtering structure used in the computation of the transition from one state to another :_p_combs_structure: all the possible parents states combination for the node of interest """ def __init__(self, graph_struct: Structure): """Constructor Method """ self._graph_struct = graph_struct self._graph = nx.DiGraph() self._aggregated_info_about_nodes_parents = None self._time_scalar_indexing_structure = None self._transition_scalar_indexing_structure = None self._time_filtering = None self._transition_filtering = None self._p_combs_structure = None def init_graph(self): self.add_nodes(self._nodes_labels) self.add_edges(self.graph_struct.edges) self.aggregated_info_about_nodes_parents = self.get_ord_set_of_par_of_all_nodes() self._fancy_indexing = self.build_fancy_indexing_structure(0) self.build_scalar_indexing_structures() self.build_time_columns_filtering_structure() self.build_transition_columns_filtering_structure() self._p_combs_structure = self.build_p_combs_structure() def fast_init(self, node_id: str) -> None: """Initializes all the necessary structures for parameters estimation of the node identified by the label node_id :param node_id: the label of the node :type node_id: string """ self.add_nodes(self._graph_struct.nodes_labels) self.add_edges(self._graph_struct.edges) self._aggregated_info_about_nodes_parents = self.get_ordered_by_indx_set_of_parents(node_id) p_indxs = self._aggregated_info_about_nodes_parents[1] p_vals = self._aggregated_info_about_nodes_parents[2] node_states = self.get_states_number(node_id) node_indx = self.get_node_indx(node_id) cols_number = self._graph_struct.total_variables_number self._time_scalar_indexing_structure = NetworkGraph.\ build_time_scalar_indexing_structure_for_a_node(node_states, p_vals) self._transition_scalar_indexing_structure = NetworkGraph.\ build_transition_scalar_indexing_structure_for_a_node(node_states, p_vals) self._time_filtering = NetworkGraph.build_time_columns_filtering_for_a_node(node_indx, p_indxs) self._transition_filtering = NetworkGraph.build_transition_filtering_for_a_node(node_indx, p_indxs, cols_number) self._p_combs_structure = NetworkGraph.build_p_comb_structure_for_a_node(p_vals) def add_nodes(self, list_of_nodes: typing.List) -> None: """Adds the nodes to the ``_graph`` contained in the list of nodes ``list_of_nodes``. Sets all the properties that identify a nodes (index, positional index, cardinality) :param list_of_nodes: the nodes to add to ``_graph`` :type list_of_nodes: List """ nodes_indxs = self._graph_struct.nodes_indexes nodes_vals = self._graph_struct.nodes_values pos = 0 for id, node_indx, node_val in zip(list_of_nodes, nodes_indxs, nodes_vals): self._graph.add_node(id, indx=node_indx, val=node_val, pos_indx=pos) pos += 1 def has_edge(self,edge:tuple)-> bool: """ Check if the graph contains a specific edge Parameters: edge: a tuple that rappresents the edge Returns: bool """ return self._graph.has_edge(edge[0],edge[1]) def add_edges(self, list_of_edges: typing.List) -> None: """Add the edges to the ``_graph`` contained in the list ``list_of_edges``. :param list_of_edges: the list containing of tuples containing the edges :type list_of_edges: List """ self._graph.add_edges_from(list_of_edges) def remove_node(self, node_id: str) -> None: """Remove the node ``node_id`` from all the class members. Initialize all the filtering/indexing structures. """ self._graph.remove_node(node_id) self._graph_struct.remove_node(node_id) self.clear_indexing_filtering_structures() def clear_indexing_filtering_structures(self) -> None: """Initialize all the filtering/indexing structures. """ self._aggregated_info_about_nodes_parents = None self._time_scalar_indexing_structure = None self._transition_scalar_indexing_structure = None self._time_filtering = None self._transition_filtering = None self._p_combs_structure = None def get_ordered_by_indx_set_of_parents(self, node: str) -> typing.Tuple: """Builds the aggregated structure that holds all the infos relative to the parent set of the node, namely (parents_labels, parents_indexes, parents_cardinalities). :param node: the label of the node :type node: string :return: a tuple containing all the parent set infos :rtype: Tuple """ parents = self.get_parents_by_id(node) nodes = self._graph_struct.nodes_labels d = {v: i for i, v in enumerate(nodes)} sorted_parents = sorted(parents, key=lambda v: d[v]) get_node_indx = self.get_node_indx p_indxes = [get_node_indx(node) for node in sorted_parents] p_values = [self.get_states_number(node) for node in sorted_parents] return sorted_parents, p_indxes, p_values def remove_edges(self, list_of_edges: typing.List) -> None: """Remove the edges to the graph contained in the list list_of_edges. :param list_of_edges: The edges to remove from the graph :type list_of_edges: List """ self._graph.remove_edges_from(list_of_edges) @staticmethod def build_time_scalar_indexing_structure_for_a_node(node_states: int, parents_vals: typing.List) -> np.ndarray: """Builds an indexing structure for the computation of state residence times values. :param node_states: the node cardinality :type node_states: int :param parents_vals: the caridinalites of the node's parents :type parents_vals: List :return: The time indexing structure :rtype: numpy.ndArray """ T_vector = np.array([node_states]) T_vector = np.append(T_vector, parents_vals) T_vector = T_vector.cumprod().astype(np.int) return T_vector @staticmethod def build_transition_scalar_indexing_structure_for_a_node(node_states_number: int, parents_vals: typing.List) \ -> np.ndarray: """Builds an indexing structure for the computation of state transitions values. :param node_states_number: the node cardinality :type node_states_number: int :param parents_vals: the caridinalites of the node's parents :type parents_vals: List :return: The transition indexing structure :rtype: numpy.ndArray """ M_vector = np.array([node_states_number, node_states_number]) M_vector = np.append(M_vector, parents_vals) M_vector = M_vector.cumprod().astype(np.int) return M_vector @staticmethod def build_time_columns_filtering_for_a_node(node_indx: int, p_indxs: typing.List) -> np.ndarray: """ Builds the necessary structure to filter the desired columns indicated by ``node_indx`` and ``p_indxs`` in the dataset. This structute will be used in the computation of the state res times. :param node_indx: the index of the node :type node_indx: int :param p_indxs: the indexes of the node's parents :type p_indxs: List :return: The filtering structure for times estimation :rtype: numpy.ndArray """ return np.append(np.array([node_indx], dtype=np.int), p_indxs).astype(np.int) @staticmethod def build_transition_filtering_for_a_node(node_indx: int, p_indxs: typing.List, nodes_number: int) \ -> np.ndarray: """Builds the necessary structure to filter the desired columns indicated by ``node_indx`` and ``p_indxs`` in the dataset. This structure will be used in the computation of the state transitions values. :param node_indx: the index of the node :type node_indx: int :param p_indxs: the indexes of the node's parents :type p_indxs: List :param nodes_number: the total number of nodes in the dataset :type nodes_number: int :return: The filtering structure for transitions estimation :rtype: numpy.ndArray """ return np.array([node_indx + nodes_number, node_indx, *p_indxs], dtype=np.int) @staticmethod def build_p_comb_structure_for_a_node(parents_values: typing.List) -> np.ndarray: """ Builds the combinatorial structure that contains the combinations of all the values contained in ``parents_values``. :param parents_values: the cardinalities of the nodes :type parents_values: List :return: A numpy matrix containing a grid of the combinations :rtype: numpy.ndArray """ tmp = [] for val in parents_values: tmp.append([x for x in range(val)]) if len(parents_values) > 0: parents_comb = np.array(np.meshgrid(*tmp)).T.reshape(-1, len(parents_values)) if len(parents_values) > 1: tmp_comb = parents_comb[:, 1].copy() parents_comb[:, 1] = parents_comb[:, 0].copy() parents_comb[:, 0] = tmp_comb else: parents_comb = np.array([[]], dtype=np.int) return parents_comb def get_parents_by_id(self, node_id) -> typing.List: """Returns a list of labels of the parents of the node ``node_id`` :param node_id: the node label :type node_id: string :return: a List of labels of the parents :rtype: List """ return list(self._graph.predecessors(node_id)) def get_states_number(self, node_id) -> int: return self._graph.nodes[node_id]['val'] def get_node_indx(self, node_id) -> int: return nx.get_node_attributes(self._graph, 'indx')[node_id] def get_positional_node_indx(self, node_id) -> int: return self._graph.nodes[node_id]['pos_indx'] @property def nodes(self) -> typing.List: return self._graph_struct.nodes_labels @property def edges(self) -> typing.List: return list(self._graph.edges) @property def nodes_indexes(self) -> np.ndarray: return self._graph_struct.nodes_indexes @property def nodes_values(self) -> np.ndarray: return self._graph_struct.nodes_values @property def time_scalar_indexing_strucure(self) -> np.ndarray: return self._time_scalar_indexing_structure @property def time_filtering(self) -> np.ndarray: return self._time_filtering @property def transition_scalar_indexing_structure(self) -> np.ndarray: return self._transition_scalar_indexing_structure @property def transition_filtering(self) -> np.ndarray: return self._transition_filtering @property def p_combs(self) -> np.ndarray: return self._p_combs_structure