|
|
|
import sys
|
|
|
|
sys.path.append('../')
|
|
|
|
import itertools
|
|
|
|
import json
|
|
|
|
import typing
|
|
|
|
|
|
|
|
import networkx as nx
|
|
|
|
import numpy as np
|
|
|
|
from networkx.readwrite import json_graph
|
|
|
|
|
|
|
|
from random import choice,sample
|
|
|
|
|
|
|
|
from abc import ABC
|
|
|
|
|
|
|
|
|
|
|
|
from optimizers.optimizer import Optimizer
|
|
|
|
from estimators import structure_estimator as se
|
|
|
|
import structure_graph.network_graph as ng
|
|
|
|
|
|
|
|
import queue
|
|
|
|
|
|
|
|
|
|
|
|
class TabuSearch(Optimizer):
|
|
|
|
"""
|
|
|
|
Optimizer class that implement Tabu Search
|
|
|
|
|
|
|
|
|
|
|
|
:param node_id: current node's id
|
|
|
|
:type node_id: string
|
|
|
|
:param structure_estimator: a structure estimator object with the information about the net
|
|
|
|
:type structure_estimator: class:'StructureEstimator'
|
|
|
|
:param max_parents: maximum number of parents for each variable. If None, disabled, default to None
|
|
|
|
:type max_parents: int, optional
|
|
|
|
:param iterations_number: maximum number of optimization algorithm's iteration, default to 40
|
|
|
|
:type iterations_number: int, optional
|
|
|
|
:param patience: number of iteration without any improvement before to stop the search.If None, disabled, default to None
|
|
|
|
:type patience: int, optional
|
|
|
|
:param tabu_length: maximum lenght of the data structures used in the optimization process, default to None
|
|
|
|
:type tabu_length: int, optional
|
|
|
|
:param tabu_rules_duration: number of iterations in which each rule keeps its value, default to None
|
|
|
|
:type tabu_rules_duration: int, optional
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
def __init__(self,
|
|
|
|
node_id:str,
|
|
|
|
structure_estimator: se.StructureEstimator,
|
|
|
|
max_parents:int = None,
|
|
|
|
iterations_number:int= 40,
|
|
|
|
patience:int = None,
|
|
|
|
tabu_length:int = None,
|
|
|
|
tabu_rules_duration = None
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Constructor
|
|
|
|
"""
|
|
|
|
super().__init__(node_id, structure_estimator)
|
|
|
|
self.max_parents = max_parents
|
|
|
|
self.iterations_number = iterations_number
|
|
|
|
self.patience = patience
|
|
|
|
self.tabu_length = tabu_length
|
|
|
|
self.tabu_rules_duration = tabu_rules_duration
|
|
|
|
|
|
|
|
|
|
|
|
def optimize_structure(self) -> typing.List:
|
|
|
|
"""
|
|
|
|
Compute Optimization process for a structure_estimator by using a Hill Climbing Algorithm
|
|
|
|
|
|
|
|
:return: the estimated structure for the node
|
|
|
|
:rtype: List
|
|
|
|
"""
|
|
|
|
print(f"tabu search is processing the structure of {self.node_id}")
|
|
|
|
|
|
|
|
'Create the graph for the single node'
|
|
|
|
graph = ng.NetworkGraph(self.structure_estimator._sample_path.structure)
|
|
|
|
|
|
|
|
'get the index for the current node'
|
|
|
|
node_index = self.structure_estimator._sample_path._structure.get_node_indx(self.node_id)
|
|
|
|
|
|
|
|
'list of prior edges'
|
|
|
|
prior_parents = set()
|
|
|
|
|
|
|
|
'Add the edges from prior knowledge'
|
|
|
|
for i in range(len(self.structure_estimator._removable_edges_matrix)):
|
|
|
|
if not self.structure_estimator._removable_edges_matrix[i][node_index]:
|
|
|
|
parent_id= self.structure_estimator._sample_path._structure.get_node_id(i)
|
|
|
|
prior_parents.add(parent_id)
|
|
|
|
|
|
|
|
'Add the node to the starting structure'
|
|
|
|
graph.add_edges([(parent_id, self.node_id)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'get all the possible parents'
|
|
|
|
other_nodes = set([node for node in
|
|
|
|
self.structure_estimator._sample_path.structure.nodes_labels if
|
|
|
|
node != self.node_id and
|
|
|
|
not prior_parents.__contains__(node)])
|
|
|
|
|
|
|
|
'calculate the score for the node without parents'
|
|
|
|
actual_best_score = self.structure_estimator.get_score_from_graph(graph,self.node_id)
|
|
|
|
|
|
|
|
|
|
|
|
'initialize tabu_length and tabu_rules_duration if None'
|
|
|
|
if self.tabu_length is None:
|
|
|
|
self.tabu_length = len(other_nodes)
|
|
|
|
|
|
|
|
if self.tabu_rules_duration is None:
|
|
|
|
self.tabu_tabu_rules_durationength = len(other_nodes)
|
|
|
|
|
|
|
|
'inizialize the data structures'
|
|
|
|
tabu_set = set()
|
|
|
|
tabu_queue = queue.Queue()
|
|
|
|
|
|
|
|
patince_count = 0
|
|
|
|
tabu_count = 0
|
|
|
|
for i in range(self.iterations_number):
|
|
|
|
|
|
|
|
current_possible_nodes = other_nodes.difference(tabu_set)
|
|
|
|
|
|
|
|
'choose a new random edge according to tabu restiction'
|
|
|
|
if(len(current_possible_nodes) > 0):
|
|
|
|
current_new_parent = sample(current_possible_nodes,k=1)[0]
|
|
|
|
else:
|
|
|
|
current_new_parent = tabu_queue.get()
|
|
|
|
tabu_set.remove(current_new_parent)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
current_edge = (current_new_parent,self.node_id)
|
|
|
|
added = False
|
|
|
|
parent_removed = None
|
|
|
|
|
|
|
|
if graph.has_edge(current_edge):
|
|
|
|
graph.remove_edges([current_edge])
|
|
|
|
else:
|
|
|
|
'check the max_parents constraint'
|
|
|
|
if self.max_parents is not None:
|
|
|
|
parents_list = graph.get_parents_by_id(self.node_id)
|
|
|
|
if len(parents_list) >= self.max_parents :
|
|
|
|
parent_removed = (choice(parents_list), self.node_id)
|
|
|
|
graph.remove_edges([parent_removed])
|
|
|
|
graph.add_edges([current_edge])
|
|
|
|
added = True
|
|
|
|
#print('**************************')
|
|
|
|
current_score = self.structure_estimator.get_score_from_graph(graph,self.node_id)
|
|
|
|
|
|
|
|
|
|
|
|
# print("-------------------------------------------")
|
|
|
|
# print(f"Current new parent: {current_new_parent}")
|
|
|
|
# print(f"Current score: {current_score}")
|
|
|
|
# print(f"Current best score: {actual_best_score}")
|
|
|
|
# print(f"tabu list : {str(tabu_set)} length: {len(tabu_set)}")
|
|
|
|
# print(f"tabu queue : {str(tabu_queue)} length: {tabu_queue.qsize()}")
|
|
|
|
# print(f"graph edges: {graph.edges}")
|
|
|
|
|
|
|
|
# print("-------------------------------------------")
|
|
|
|
# input()
|
|
|
|
if current_score > actual_best_score:
|
|
|
|
'update current best score'
|
|
|
|
actual_best_score = current_score
|
|
|
|
patince_count = 0
|
|
|
|
'update tabu list'
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
'undo the last update'
|
|
|
|
if added:
|
|
|
|
graph.remove_edges([current_edge])
|
|
|
|
'If a parent was removed, add it again to the graph'
|
|
|
|
if parent_removed is not None:
|
|
|
|
graph.add_edges([parent_removed])
|
|
|
|
else:
|
|
|
|
graph.add_edges([current_edge])
|
|
|
|
'update patience count'
|
|
|
|
patince_count += 1
|
|
|
|
|
|
|
|
|
|
|
|
if tabu_queue.qsize() >= self.tabu_length:
|
|
|
|
current_removed = tabu_queue.get()
|
|
|
|
tabu_set.remove(current_removed)
|
|
|
|
'Add the node on the tabu list'
|
|
|
|
tabu_queue.put(current_new_parent)
|
|
|
|
tabu_set.add(current_new_parent)
|
|
|
|
|
|
|
|
tabu_count += 1
|
|
|
|
|
|
|
|
'Every tabu_rules_duration step remove an item from the tabu list '
|
|
|
|
if tabu_count % self.tabu_rules_duration == 0:
|
|
|
|
if tabu_queue.qsize() > 0:
|
|
|
|
current_removed = tabu_queue.get()
|
|
|
|
tabu_set.remove(current_removed)
|
|
|
|
tabu_count = 0
|
|
|
|
else:
|
|
|
|
tabu_count = 0
|
|
|
|
|
|
|
|
if self.patience is not None and patince_count > self.patience:
|
|
|
|
break
|
|
|
|
|
|
|
|
print(f"finito variabile: {self.node_id}")
|
|
|
|
return graph.edges
|