parent
96a93957e6
commit
3a80bd3ce9
@ -0,0 +1,112 @@ |
||||
import sys |
||||
sys.path.append('../') |
||||
import itertools |
||||
import json |
||||
import typing |
||||
|
||||
import networkx as nx |
||||
import numpy as np |
||||
from networkx.readwrite import json_graph |
||||
|
||||
from random import choice |
||||
|
||||
from abc import ABC |
||||
|
||||
|
||||
from optimizers.optimizer import Optimizer |
||||
from estimators import structure_estimator as se |
||||
import structure_graph.network_graph as ng |
||||
|
||||
|
||||
class HillClimbing(Optimizer): |
||||
""" |
||||
Optimizer class that implement Hill Climbing Search |
||||
|
||||
""" |
||||
def __init__(self, |
||||
node_id:str, |
||||
structure_estimator: se.StructureEstimator, |
||||
max_parents:int = None, |
||||
iterations_number:int= 40, |
||||
patience:int = None |
||||
): |
||||
""" |
||||
Compute Optimization process for a structure_estimator |
||||
|
||||
Parameters: |
||||
max_parents: maximum number of parents for each variable. If None, disabled |
||||
iterations_number: maximum number of optimization algorithm's iteration |
||||
patience: number of iteration without any improvement before to stop the search.If None, disabled |
||||
|
||||
|
||||
""" |
||||
super().__init__(node_id, structure_estimator) |
||||
self.max_parents = max_parents |
||||
self.iterations_number = iterations_number |
||||
self.patience = patience |
||||
|
||||
|
||||
|
||||
def optimize_structure(self) -> typing.List: |
||||
""" |
||||
Compute Optimization process for a structure_estimator |
||||
|
||||
Parameters: |
||||
|
||||
Returns: |
||||
the estimated structure for the node |
||||
|
||||
""" |
||||
|
||||
#'Create the graph for the single node' |
||||
graph = ng.NetworkGraph(self.structure_estimator.sample_path.structure) |
||||
|
||||
|
||||
other_nodes = [node for node in self.structure_estimator.sample_path.structure.nodes_labels if node != self.node_id] |
||||
actual_best_score = self.structure_estimator.get_score_from_graph(graph,self.node_id) |
||||
|
||||
patince_count = 0 |
||||
for i in range(self.iterations_number): |
||||
'choose a new random edge' |
||||
current_new_parent = choice(other_nodes) |
||||
current_edge = (current_new_parent,self.node_id) |
||||
added = False |
||||
parent_removed = None |
||||
|
||||
|
||||
if graph.has_edge(current_edge): |
||||
graph.remove_edges([current_edge]) |
||||
else: |
||||
'check the max_parents constraint' |
||||
if self.max_parents is not None: |
||||
parents_list = graph.get_parents_by_id(self.node_id) |
||||
if len(parents_list) >= self.max_parents : |
||||
parent_removed = (choice(parents_list), self.node_id) |
||||
graph.remove_edges([parent_removed]) |
||||
graph.add_edges([current_edge]) |
||||
added = True |
||||
#print('**************************') |
||||
current_score = self.structure_estimator.get_score_from_graph(graph,self.node_id) |
||||
|
||||
|
||||
if current_score > actual_best_score: |
||||
'update current best score' |
||||
actual_best_score = current_score |
||||
patince_count = 0 |
||||
else: |
||||
'undo the last update' |
||||
if added: |
||||
graph.remove_edges([current_edge]) |
||||
'If a parent was removed, add it again to the graph' |
||||
if parent_removed is not None: |
||||
graph.add_edges([parent_removed]) |
||||
else: |
||||
graph.add_edges([current_edge]) |
||||
'update patience count' |
||||
patince_count += 1 |
||||
|
||||
if self.patience is not None and patince_count > self.patience: |
||||
break |
||||
|
||||
print(f"finito variabile: {self.node_id}") |
||||
return graph.edges |
@ -0,0 +1,39 @@ |
||||
import sys |
||||
sys.path.append('../') |
||||
import itertools |
||||
import json |
||||
import typing |
||||
|
||||
import networkx as nx |
||||
import numpy as np |
||||
from networkx.readwrite import json_graph |
||||
|
||||
import abc |
||||
|
||||
from estimators import structure_estimator as se |
||||
|
||||
|
||||
|
||||
class Optimizer(abc.ABC): |
||||
""" |
||||
Interface class for all the optimizer's child classes |
||||
|
||||
""" |
||||
|
||||
def __init__(self, node_id:str, structure_estimator: se.StructureEstimator): |
||||
self.node_id = node_id |
||||
self.structure_estimator = structure_estimator |
||||
|
||||
|
||||
@abc.abstractmethod |
||||
def optimize_structure(self) -> typing.List: |
||||
""" |
||||
Compute Optimization process for a structure_estimator |
||||
|
||||
Parameters: |
||||
|
||||
Returns: |
||||
the estimated structure for the node |
||||
|
||||
""" |
||||
pass |
@ -0,0 +1,161 @@ |
||||
import sys |
||||
sys.path.append('../') |
||||
import itertools |
||||
import json |
||||
import typing |
||||
|
||||
import networkx as nx |
||||
import numpy as np |
||||
from networkx.readwrite import json_graph |
||||
|
||||
from random import choice,sample |
||||
|
||||
from abc import ABC |
||||
|
||||
|
||||
from optimizers.optimizer import Optimizer |
||||
from estimators import structure_estimator as se |
||||
import structure_graph.network_graph as ng |
||||
|
||||
import queue |
||||
|
||||
|
||||
class TabuSearch(Optimizer): |
||||
""" |
||||
Optimizer class that implement Hill Climbing Search |
||||
|
||||
""" |
||||
def __init__(self, |
||||
node_id:str, |
||||
structure_estimator: se.StructureEstimator, |
||||
max_parents:int = None, |
||||
iterations_number:int= 40, |
||||
patience:int = None, |
||||
tabu_length:int = 0, |
||||
tabu_rules_duration = 5 |
||||
): |
||||
""" |
||||
Compute Optimization process for a structure_estimator |
||||
|
||||
Parameters: |
||||
max_parents: maximum number of parents for each variable. If None, disabled |
||||
iterations_number: maximum number of optimization algorithm's iteration |
||||
patience: number of iteration without any improvement before to stop the search.If None, disabled |
||||
tabu_length: maximum lenght of the data structures used in the optimization process |
||||
tabu_rules_duration: number of iterations in which each rule keeps its value |
||||
|
||||
""" |
||||
super().__init__(node_id, structure_estimator) |
||||
self.max_parents = max_parents |
||||
self.iterations_number = iterations_number |
||||
self.patience = patience |
||||
self.tabu_length = tabu_length |
||||
self.tabu_rules_duration = tabu_rules_duration |
||||
|
||||
|
||||
def optimize_structure(self) -> typing.List: |
||||
""" |
||||
Compute Optimization process for a structure_estimator |
||||
|
||||
Parameters: |
||||
|
||||
Returns: |
||||
the estimated structure for the node |
||||
|
||||
""" |
||||
print(f"tabu search is processing the structure of {self.node_id}") |
||||
#'Create the graph for the single node' |
||||
graph = ng.NetworkGraph(self.structure_estimator.sample_path.structure) |
||||
|
||||
|
||||
other_nodes = set([node for node in self.structure_estimator.sample_path.structure.nodes_labels if node != self.node_id]) |
||||
actual_best_score = self.structure_estimator.get_score_from_graph(graph,self.node_id) |
||||
|
||||
tabu_set = set() |
||||
tabu_queue = queue.Queue() |
||||
|
||||
patince_count = 0 |
||||
tabu_count = 0 |
||||
for i in range(self.iterations_number): |
||||
|
||||
current_possible_nodes = other_nodes.difference(tabu_set) |
||||
|
||||
'choose a new random edge according to tabu restiction' |
||||
if(len(current_possible_nodes) > 0): |
||||
current_new_parent = sample(current_possible_nodes,k=1)[0] |
||||
else: |
||||
current_new_parent = tabu_queue.get() |
||||
tabu_set.remove(current_new_parent) |
||||
|
||||
|
||||
|
||||
current_edge = (current_new_parent,self.node_id) |
||||
added = False |
||||
parent_removed = None |
||||
|
||||
if graph.has_edge(current_edge): |
||||
graph.remove_edges([current_edge]) |
||||
else: |
||||
'check the max_parents constraint' |
||||
if self.max_parents is not None: |
||||
parents_list = graph.get_parents_by_id(self.node_id) |
||||
if len(parents_list) >= self.max_parents : |
||||
parent_removed = (choice(parents_list), self.node_id) |
||||
graph.remove_edges([parent_removed]) |
||||
graph.add_edges([current_edge]) |
||||
added = True |
||||
#print('**************************') |
||||
current_score = self.structure_estimator.get_score_from_graph(graph,self.node_id) |
||||
|
||||
|
||||
# print("-------------------------------------------") |
||||
# print(f"Current new parent: {current_new_parent}") |
||||
# print(f"Current score: {current_score}") |
||||
# print(f"Current best score: {actual_best_score}") |
||||
# print(f"tabu list : {str(tabu_set)} length: {len(tabu_set)}") |
||||
# print(f"tabu queue : {str(tabu_queue)} length: {tabu_queue.qsize()}") |
||||
# print(f"graph edges: {graph.edges}") |
||||
|
||||
# print("-------------------------------------------") |
||||
# input() |
||||
if current_score > actual_best_score: |
||||
'update current best score' |
||||
actual_best_score = current_score |
||||
patince_count = 0 |
||||
'update tabu list' |
||||
|
||||
|
||||
else: |
||||
'undo the last update' |
||||
if added: |
||||
graph.remove_edges([current_edge]) |
||||
'If a parent was removed, add it again to the graph' |
||||
if parent_removed is not None: |
||||
graph.add_edges([parent_removed]) |
||||
else: |
||||
graph.add_edges([current_edge]) |
||||
'update patience count' |
||||
patince_count += 1 |
||||
tabu_count += 1 |
||||
|
||||
if tabu_queue.qsize() >= self.tabu_length: |
||||
current_removed = tabu_queue.get() |
||||
tabu_set.remove(current_removed) |
||||
'Add the node on the tabu list' |
||||
tabu_queue.put(current_new_parent) |
||||
tabu_set.add(current_new_parent) |
||||
|
||||
|
||||
if tabu_count % self.tabu_rules_duration == 0: |
||||
if tabu_queue.qsize() > 0: |
||||
current_removed = tabu_queue.get() |
||||
tabu_set.remove(current_removed) |
||||
tabu_count = 0 |
||||
else: |
||||
tabu_count = 0 |
||||
|
||||
if self.patience is not None and patince_count > self.patience: |
||||
break |
||||
|
||||
print(f"finito variabile: {self.node_id}") |
||||
return graph.edges |
@ -0,0 +1,52 @@ |
||||
import sys |
||||
sys.path.append("../../classes/") |
||||
import glob |
||||
import math |
||||
import os |
||||
import unittest |
||||
|
||||
import networkx as nx |
||||
import numpy as np |
||||
import psutil |
||||
from line_profiler import LineProfiler |
||||
import copy |
||||
|
||||
import utility.cache as ch |
||||
import structure_graph.sample_path as sp |
||||
import estimators.structure_score_based_estimator as se |
||||
import utility.json_importer as ji |
||||
|
||||
|
||||
|
||||
class TestHillClimbingSearch(unittest.TestCase): |
||||
|
||||
@classmethod |
||||
def setUpClass(cls): |
||||
#cls.read_files = glob.glob(os.path.join('../../data', "*.json")) |
||||
cls.importer = ji.JsonImporter("../../data/networks_and_trajectories_binary_data_01_3.json", 'samples', 'dyn.str', 'variables', 'Time', 'Name') |
||||
cls.s1 = sp.SamplePath(cls.importer) |
||||
cls.s1.build_trajectories() |
||||
cls.s1.build_structure() |
||||
|
||||
|
||||
|
||||
def test_structure(self): |
||||
true_edges = copy.deepcopy(self.s1.structure.edges) |
||||
true_edges = set(map(tuple, true_edges)) |
||||
|
||||
se1 = se.StructureScoreBasedEstimator(self.s1) |
||||
edges = se1.estimate_structure( |
||||
max_parents = None, |
||||
iterations_number = 40, |
||||
patience = None, |
||||
optimizer = 'hill' |
||||
) |
||||
|
||||
|
||||
self.assertEqual(edges, true_edges) |
||||
|
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
unittest.main() |
||||
|
@ -0,0 +1,54 @@ |
||||
import sys |
||||
sys.path.append("../../classes/") |
||||
import glob |
||||
import math |
||||
import os |
||||
import unittest |
||||
|
||||
import networkx as nx |
||||
import numpy as np |
||||
import psutil |
||||
from line_profiler import LineProfiler |
||||
import copy |
||||
|
||||
import utility.cache as ch |
||||
import structure_graph.sample_path as sp |
||||
import estimators.structure_score_based_estimator as se |
||||
import utility.json_importer as ji |
||||
|
||||
|
||||
|
||||
class TestTabuSearch(unittest.TestCase): |
||||
|
||||
@classmethod |
||||
def setUpClass(cls): |
||||
#cls.read_files = glob.glob(os.path.join('../../data', "*.json")) |
||||
cls.importer = ji.JsonImporter("../../data/networks_and_trajectories_ternary_data_04_10.json", 'samples', 'dyn.str', 'variables', 'Time', 'Name') |
||||
cls.s1 = sp.SamplePath(cls.importer) |
||||
cls.s1.build_trajectories() |
||||
cls.s1.build_structure() |
||||
|
||||
|
||||
|
||||
def test_structure(self): |
||||
true_edges = copy.deepcopy(self.s1.structure.edges) |
||||
true_edges = set(map(tuple, true_edges)) |
||||
|
||||
se1 = se.StructureScoreBasedEstimator(self.s1) |
||||
edges = se1.estimate_structure( |
||||
max_parents = None, |
||||
iterations_number = 100, |
||||
patience = None, |
||||
tabu_length = 15, |
||||
tabu_rules_duration = 15, |
||||
optimizer = 'tabu' |
||||
) |
||||
|
||||
|
||||
self.assertEqual(edges, true_edges) |
||||
|
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
unittest.main() |
||||
|
Reference in new issue