|
|
|
import sys
|
|
|
|
sys.path.append('../')
|
|
|
|
import itertools
|
|
|
|
import json
|
|
|
|
import typing
|
|
|
|
|
|
|
|
import networkx as nx
|
|
|
|
import numpy as np
|
|
|
|
from networkx.readwrite import json_graph
|
|
|
|
|
|
|
|
from random import choice
|
|
|
|
|
|
|
|
from abc import ABC
|
|
|
|
|
|
|
|
|
|
|
|
from optimizers.optimizer import Optimizer
|
|
|
|
from estimators import structure_estimator as se
|
|
|
|
import structure_graph.network_graph as ng
|
|
|
|
|
|
|
|
|
|
|
|
class HillClimbing(Optimizer):
|
|
|
|
"""
|
|
|
|
Optimizer class that implement Hill Climbing Search
|
|
|
|
|
|
|
|
|
|
|
|
:param node_id: current node's id
|
|
|
|
:type node_id: string
|
|
|
|
:param structure_estimator: a structure estimator object with the information about the net
|
|
|
|
:type structure_estimator: class:'StructureEstimator'
|
|
|
|
:param max_parents: maximum number of parents for each variable. If None, disabled, default to None
|
|
|
|
:type max_parents: int, optional
|
|
|
|
:param iterations_number: maximum number of optimization algorithm's iteration, default to 40
|
|
|
|
:type iterations_number: int, optional
|
|
|
|
:param patience: number of iteration without any improvement before to stop the search.If None, disabled, default to None
|
|
|
|
:type patience: int, optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
def __init__(self,
|
|
|
|
node_id:str,
|
|
|
|
structure_estimator: se.StructureEstimator,
|
|
|
|
max_parents:int = None,
|
|
|
|
iterations_number:int= 40,
|
|
|
|
patience:int = None
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Constructor
|
|
|
|
"""
|
|
|
|
super().__init__(node_id, structure_estimator)
|
|
|
|
self.max_parents = max_parents
|
|
|
|
self.iterations_number = iterations_number
|
|
|
|
self.patience = patience
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def optimize_structure(self) -> typing.List:
|
|
|
|
"""
|
|
|
|
Compute Optimization process for a structure_estimator by using a Hill Climbing Algorithm
|
|
|
|
|
|
|
|
:return: the estimated structure for the node
|
|
|
|
:rtype: List
|
|
|
|
"""
|
|
|
|
|
|
|
|
#'Create the graph for the single node'
|
|
|
|
graph = ng.NetworkGraph(self.structure_estimator._sample_path.structure)
|
|
|
|
|
|
|
|
'get the index for the current node'
|
|
|
|
node_index = self.structure_estimator._sample_path._structure.get_node_indx(self.node_id)
|
|
|
|
|
|
|
|
'list of prior edges'
|
|
|
|
prior_parents = set()
|
|
|
|
|
|
|
|
'Add the edges from prior knowledge'
|
|
|
|
for i in range(len(self.structure_estimator._removable_edges_matrix)):
|
|
|
|
if not self.structure_estimator._removable_edges_matrix[i][node_index]:
|
|
|
|
parent_id= self.structure_estimator._sample_path._structure.get_node_id(i)
|
|
|
|
prior_parents.add(parent_id)
|
|
|
|
|
|
|
|
'Add the node to the starting structure'
|
|
|
|
graph.add_edges([(parent_id, self.node_id)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'get all the possible parents'
|
|
|
|
other_nodes = [node for node in
|
|
|
|
self.structure_estimator._sample_path.structure.nodes_labels if
|
|
|
|
node != self.node_id and
|
|
|
|
not prior_parents.__contains__(node)]
|
|
|
|
|
|
|
|
actual_best_score = self.structure_estimator.get_score_from_graph(graph,self.node_id)
|
|
|
|
|
|
|
|
patince_count = 0
|
|
|
|
for i in range(self.iterations_number):
|
|
|
|
'choose a new random edge'
|
|
|
|
current_new_parent = choice(other_nodes)
|
|
|
|
current_edge = (current_new_parent,self.node_id)
|
|
|
|
added = False
|
|
|
|
parent_removed = None
|
|
|
|
|
|
|
|
|
|
|
|
if graph.has_edge(current_edge):
|
|
|
|
graph.remove_edges([current_edge])
|
|
|
|
else:
|
|
|
|
'check the max_parents constraint'
|
|
|
|
if self.max_parents is not None:
|
|
|
|
parents_list = graph.get_parents_by_id(self.node_id)
|
|
|
|
if len(parents_list) >= self.max_parents :
|
|
|
|
parent_removed = (choice(parents_list), self.node_id)
|
|
|
|
graph.remove_edges([parent_removed])
|
|
|
|
graph.add_edges([current_edge])
|
|
|
|
added = True
|
|
|
|
#print('**************************')
|
|
|
|
current_score = self.structure_estimator.get_score_from_graph(graph,self.node_id)
|
|
|
|
|
|
|
|
|
|
|
|
if current_score > actual_best_score:
|
|
|
|
'update current best score'
|
|
|
|
actual_best_score = current_score
|
|
|
|
patince_count = 0
|
|
|
|
else:
|
|
|
|
'undo the last update'
|
|
|
|
if added:
|
|
|
|
graph.remove_edges([current_edge])
|
|
|
|
'If a parent was removed, add it again to the graph'
|
|
|
|
if parent_removed is not None:
|
|
|
|
graph.add_edges([parent_removed])
|
|
|
|
else:
|
|
|
|
graph.add_edges([current_edge])
|
|
|
|
'update patience count'
|
|
|
|
patince_count += 1
|
|
|
|
|
|
|
|
if self.patience is not None and patince_count > self.patience:
|
|
|
|
break
|
|
|
|
|
|
|
|
print(f"finito variabile: {self.node_id}")
|
|
|
|
return graph.edges
|