A new, blazing-fast learning engine for Continuous Time Bayesian Networks. Written in pure Rust. 🦀
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
reCTBN/tests/structure_learning.rs

392 lines
12 KiB

#![allow(non_snake_case)]
mod utils;
use utils::*;
use ndarray::{arr1, arr2, arr3};
use reCTBN::ctbn::*;
use reCTBN::network::Network;
use reCTBN::params;
use reCTBN::structure_learning::score_function::*;
use reCTBN::structure_learning::{score_based_algorithm::*, StructureLearningAlgorithm};
use reCTBN::structure_learning::hypothesis_test::*;
use reCTBN::tools::*;
use std::collections::BTreeSet;
#[macro_use]
extern crate approx;
#[test]
fn simple_score_test() {
let mut net = CtbnNetwork::new();
let n1 = net
.add_node(generate_discrete_time_continous_node(String::from("n1"), 2))
.unwrap();
let trj = Trajectory::new(arr1(&[0.0, 0.1, 0.3]), arr2(&[[0], [1], [1]]));
let dataset = Dataset::new(vec![trj]);
let ll = LogLikelihood::new(1, 1.0);
assert_abs_diff_eq!(
0.04257,
ll.call(&net, n1, &BTreeSet::new(), &dataset),
epsilon = 1e-3
);
}
#[test]
fn simple_bic() {
let mut net = CtbnNetwork::new();
let n1 = net
.add_node(generate_discrete_time_continous_node(String::from("n1"), 2))
.unwrap();
let trj = Trajectory::new(arr1(&[0.0, 0.1, 0.3]), arr2(&[[0], [1], [1]]));
let dataset = Dataset::new(vec![trj]);
let bic = BIC::new(1, 1.0);
assert_abs_diff_eq!(
-0.65058,
bic.call(&net, n1, &BTreeSet::new(), &dataset),
epsilon = 1e-3
);
}
fn check_compatibility_between_dataset_and_network<T: StructureLearningAlgorithm>(sl: T) {
let mut net = CtbnNetwork::new();
let n1 = net
.add_node(generate_discrete_time_continous_node(String::from("n1"), 3))
.unwrap();
let n2 = net
.add_node(generate_discrete_time_continous_node(String::from("n2"), 3))
.unwrap();
net.add_edge(n1, n2);
match &mut net.get_node_mut(n1) {
params::Params::DiscreteStatesContinousTime(param) => {
assert_eq!(
Ok(()),
param.set_cim(arr3(&[[
[-3.0, 2.0, 1.0],
[1.5, -2.0, 0.5],
[0.4, 0.6, -1.0]
]]))
);
}
}
match &mut net.get_node_mut(n2) {
params::Params::DiscreteStatesContinousTime(param) => {
assert_eq!(
Ok(()),
param.set_cim(arr3(&[
[[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]],
[[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]],
[[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]],
]))
);
}
}
let data = trajectory_generator(&net, 100, 20.0, Some(6347747169756259));
let mut net = CtbnNetwork::new();
let _n1 = net
.add_node(generate_discrete_time_continous_node(String::from("n1"), 3))
.unwrap();
let _net = sl.fit_transform(net, &data);
}
#[test]
#[should_panic]
pub fn check_compatibility_between_dataset_and_network_hill_climbing() {
let ll = LogLikelihood::new(1, 1.0);
let hl = HillClimbing::new(ll, None);
check_compatibility_between_dataset_and_network(hl);
}
fn learn_ternary_net_2_nodes<T: StructureLearningAlgorithm>(sl: T) {
let mut net = CtbnNetwork::new();
let n1 = net
.add_node(generate_discrete_time_continous_node(String::from("n1"), 3))
.unwrap();
let n2 = net
.add_node(generate_discrete_time_continous_node(String::from("n2"), 3))
.unwrap();
net.add_edge(n1, n2);
match &mut net.get_node_mut(n1) {
params::Params::DiscreteStatesContinousTime(param) => {
assert_eq!(
Ok(()),
param.set_cim(arr3(&[[
[-3.0, 2.0, 1.0],
[1.5, -2.0, 0.5],
[0.4, 0.6, -1.0]
]]))
);
}
}
match &mut net.get_node_mut(n2) {
params::Params::DiscreteStatesContinousTime(param) => {
assert_eq!(
Ok(()),
param.set_cim(arr3(&[
[[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]],
[[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]],
[[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]],
]))
);
}
}
let data = trajectory_generator(&net, 100, 20.0, Some(6347747169756259));
let net = sl.fit_transform(net, &data);
assert_eq!(BTreeSet::from_iter(vec![n1]), net.get_parent_set(n2));
assert_eq!(BTreeSet::new(), net.get_parent_set(n1));
}
#[test]
pub fn learn_ternary_net_2_nodes_hill_climbing_ll() {
let ll = LogLikelihood::new(1, 1.0);
let hl = HillClimbing::new(ll, None);
learn_ternary_net_2_nodes(hl);
}
#[test]
pub fn learn_ternary_net_2_nodes_hill_climbing_bic() {
let bic = BIC::new(1, 1.0);
let hl = HillClimbing::new(bic, None);
learn_ternary_net_2_nodes(hl);
}
fn get_mixed_discrete_net_3_nodes_with_data() -> (CtbnNetwork, Dataset) {
let mut net = CtbnNetwork::new();
let n1 = net
.add_node(generate_discrete_time_continous_node(String::from("n1"), 3))
.unwrap();
let n2 = net
.add_node(generate_discrete_time_continous_node(String::from("n2"), 3))
.unwrap();
let n3 = net
.add_node(generate_discrete_time_continous_node(String::from("n3"), 4))
.unwrap();
net.add_edge(n1, n2);
net.add_edge(n1, n3);
net.add_edge(n2, n3);
match &mut net.get_node_mut(n1) {
params::Params::DiscreteStatesContinousTime(param) => {
assert_eq!(
Ok(()),
param.set_cim(arr3(&[[
[-3.0, 2.0, 1.0],
[1.5, -2.0, 0.5],
[0.4, 0.6, -1.0]
]]))
);
}
}
match &mut net.get_node_mut(n2) {
params::Params::DiscreteStatesContinousTime(param) => {
assert_eq!(
Ok(()),
param.set_cim(arr3(&[
[[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]],
[[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]],
[[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]],
]))
);
}
}
match &mut net.get_node_mut(n3) {
params::Params::DiscreteStatesContinousTime(param) => {
assert_eq!(
Ok(()),
param.set_cim(arr3(&[
[
[-1.0, 0.5, 0.3, 0.2],
[0.5, -4.0, 2.5, 1.0],
[2.5, 0.5, -4.0, 1.0],
[0.7, 0.2, 0.1, -1.0]
],
[
[-6.0, 2.0, 3.0, 1.0],
[1.5, -3.0, 0.5, 1.0],
[2.0, 1.3, -5.0, 1.7],
[2.5, 0.5, 1.0, -4.0]
],
[
[-1.3, 0.3, 0.1, 0.9],
[1.4, -4.0, 0.5, 2.1],
[1.0, 1.5, -3.0, 0.5],
[0.4, 0.3, 0.1, -0.8]
],
[
[-2.0, 1.0, 0.7, 0.3],
[1.3, -5.9, 2.7, 1.9],
[2.0, 1.5, -4.0, 0.5],
[0.2, 0.7, 0.1, -1.0]
],
[
[-6.0, 1.0, 2.0, 3.0],
[0.5, -3.0, 1.0, 1.5],
[1.4, 2.1, -4.3, 0.8],
[0.5, 1.0, 2.5, -4.0]
],
[
[-1.3, 0.9, 0.3, 0.1],
[0.1, -1.3, 0.2, 1.0],
[0.5, 1.0, -3.0, 1.5],
[0.1, 0.4, 0.3, -0.8]
],
[
[-2.0, 1.0, 0.6, 0.4],
[2.6, -7.1, 1.4, 3.1],
[5.0, 1.0, -8.0, 2.0],
[1.4, 0.4, 0.2, -2.0]
],
[
[-3.0, 1.0, 1.5, 0.5],
[3.0, -6.0, 1.0, 2.0],
[0.3, 0.5, -1.9, 1.1],
[5.0, 1.0, 2.0, -8.0]
],
[
[-2.6, 0.6, 0.2, 1.8],
[2.0, -6.0, 3.0, 1.0],
[0.1, 0.5, -1.3, 0.7],
[0.8, 0.6, 0.2, -1.6]
],
]))
);
}
}
let data = trajectory_generator(&net, 300, 30.0, Some(6347747169756259));
return (net, data);
}
fn learn_mixed_discrete_net_3_nodes<T: StructureLearningAlgorithm>(sl: T) {
let (net, data) = get_mixed_discrete_net_3_nodes_with_data();
let net = sl.fit_transform(net, &data);
assert_eq!(BTreeSet::new(), net.get_parent_set(0));
assert_eq!(BTreeSet::from_iter(vec![0]), net.get_parent_set(1));
assert_eq!(BTreeSet::from_iter(vec![0, 1]), net.get_parent_set(2));
}
#[test]
pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_ll() {
let ll = LogLikelihood::new(1, 1.0);
let hl = HillClimbing::new(ll, None);
learn_mixed_discrete_net_3_nodes(hl);
}
#[test]
pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_bic() {
let bic = BIC::new(1, 1.0);
let hl = HillClimbing::new(bic, None);
learn_mixed_discrete_net_3_nodes(hl);
}
fn learn_mixed_discrete_net_3_nodes_1_parent_constraint<T: StructureLearningAlgorithm>(sl: T) {
let (net, data) = get_mixed_discrete_net_3_nodes_with_data();
let net = sl.fit_transform(net, &data);
assert_eq!(BTreeSet::new(), net.get_parent_set(0));
assert_eq!(BTreeSet::from_iter(vec![0]), net.get_parent_set(1));
assert_eq!(BTreeSet::from_iter(vec![0]), net.get_parent_set(2));
}
#[test]
pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_ll_1_parent_constraint() {
let ll = LogLikelihood::new(1, 1.0);
let hl = HillClimbing::new(ll, Some(1));
learn_mixed_discrete_net_3_nodes_1_parent_constraint(hl);
}
#[test]
pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_bic_1_parent_constraint() {
let bic = BIC::new(1, 1.0);
let hl = HillClimbing::new(bic, Some(1));
learn_mixed_discrete_net_3_nodes_1_parent_constraint(hl);
}
#[test]
pub fn chi_square_compare_matrices () {
let i: usize = 1;
let M1 = arr3(&[
[[ 0, 2, 3],
[ 4, 0, 6],
[ 7, 8, 0]],
[[0, 12, 90],
[ 3, 0, 40],
[ 6, 40, 0]],
[[ 0, 2, 3],
[ 4, 0, 6],
[ 44, 66, 0]]
]);
let j: usize = 0;
let M2 = arr3(&[
[[ 0, 200, 300],
[ 400, 0, 600],
[ 700, 800, 0]]
]);
let chi_sq = ChiSquare::new(0.1);
assert!(!chi_sq.compare_matrices( i, &M1, j, &M2));
}
#[test]
pub fn chi_square_compare_matrices_2 () {
let i: usize = 1;
let M1 = arr3(&[
[[ 0, 2, 3],
[ 4, 0, 6],
[ 7, 8, 0]],
[[0, 20, 30],
[ 40, 0, 60],
[ 70, 80, 0]],
[[ 0, 2, 3],
[ 4, 0, 6],
[ 44, 66, 0]]
]);
let j: usize = 0;
let M2 = arr3(&[
[[ 0, 200, 300],
[ 400, 0, 600],
[ 700, 800, 0]]
]);
let chi_sq = ChiSquare::new(0.1);
assert!(chi_sq.compare_matrices( i, &M1, j, &M2));
}
#[test]
pub fn chi_square_compare_matrices_3 () {
let i: usize = 1;
let M1 = arr3(&[
[[ 0, 2, 3],
[ 4, 0, 6],
[ 7, 8, 0]],
[[0, 21, 31],
[ 41, 0, 59],
[ 71, 79, 0]],
[[ 0, 2, 3],
[ 4, 0, 6],
[ 44, 66, 0]]
]);
let j: usize = 0;
let M2 = arr3(&[
[[ 0, 200, 300],
[ 400, 0, 600],
[ 700, 800, 0]]
]);
let chi_sq = ChiSquare::new(0.1);
assert!(chi_sq.compare_matrices( i, &M1, j, &M2));
}