You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
369 lines
11 KiB
369 lines
11 KiB
#![allow(non_snake_case)]
|
|
|
|
mod utils;
|
|
use ndarray::arr3;
|
|
use reCTBN::ctbn::*;
|
|
use reCTBN::network::Network;
|
|
use reCTBN::parameter_learning::*;
|
|
use reCTBN::params;
|
|
use reCTBN::tools::*;
|
|
use utils::*;
|
|
|
|
extern crate approx;
|
|
|
|
fn learn_binary_cim<T: ParameterLearning>(pl: T) {
|
|
let mut net = CtbnNetwork::new();
|
|
let n1 = net
|
|
.add_node(generate_discrete_time_continous_node(String::from("n1"), 2))
|
|
.unwrap();
|
|
let n2 = net
|
|
.add_node(generate_discrete_time_continous_node(String::from("n2"), 2))
|
|
.unwrap();
|
|
net.add_edge(n1, n2);
|
|
|
|
match &mut net.get_node_mut(n1) {
|
|
params::Params::DiscreteStatesContinousTime(param) => {
|
|
assert_eq!(Ok(()), param.set_cim(arr3(&[[[-3.0, 3.0], [2.0, -2.0]]])));
|
|
}
|
|
}
|
|
|
|
match &mut net.get_node_mut(n2) {
|
|
params::Params::DiscreteStatesContinousTime(param) => {
|
|
assert_eq!(
|
|
Ok(()),
|
|
param.set_cim(arr3(&[
|
|
[[-1.0, 1.0], [4.0, -4.0]],
|
|
[[-6.0, 6.0], [2.0, -2.0]],
|
|
]))
|
|
);
|
|
}
|
|
}
|
|
|
|
let data = trajectory_generator(&net, 100, 100.0, Some(6347747169756259));
|
|
let p = match pl.fit(&net, &data, 1, None) {
|
|
params::Params::DiscreteStatesContinousTime(p) => p,
|
|
};
|
|
assert_eq!(p.get_cim().as_ref().unwrap().shape(), [2, 2, 2]);
|
|
assert!(p.get_cim().as_ref().unwrap().abs_diff_eq(
|
|
&arr3(&[[[-1.0, 1.0], [4.0, -4.0]], [[-6.0, 6.0], [2.0, -2.0]],]),
|
|
0.1
|
|
));
|
|
}
|
|
|
|
#[test]
|
|
fn learn_binary_cim_MLE() {
|
|
let mle = MLE {};
|
|
learn_binary_cim(mle);
|
|
}
|
|
|
|
#[test]
|
|
fn learn_binary_cim_BA() {
|
|
let ba = BayesianApproach { alpha: 1, tau: 1.0 };
|
|
learn_binary_cim(ba);
|
|
}
|
|
|
|
fn learn_ternary_cim<T: ParameterLearning>(pl: T) {
|
|
let mut net = CtbnNetwork::new();
|
|
let n1 = net
|
|
.add_node(generate_discrete_time_continous_node(String::from("n1"), 3))
|
|
.unwrap();
|
|
let n2 = net
|
|
.add_node(generate_discrete_time_continous_node(String::from("n2"), 3))
|
|
.unwrap();
|
|
net.add_edge(n1, n2);
|
|
|
|
match &mut net.get_node_mut(n1) {
|
|
params::Params::DiscreteStatesContinousTime(param) => {
|
|
assert_eq!(
|
|
Ok(()),
|
|
param.set_cim(arr3(&[[
|
|
[-3.0, 2.0, 1.0],
|
|
[1.5, -2.0, 0.5],
|
|
[0.4, 0.6, -1.0]
|
|
]]))
|
|
);
|
|
}
|
|
}
|
|
|
|
match &mut net.get_node_mut(n2) {
|
|
params::Params::DiscreteStatesContinousTime(param) => {
|
|
assert_eq!(
|
|
Ok(()),
|
|
param.set_cim(arr3(&[
|
|
[[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]],
|
|
[[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]],
|
|
[[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]],
|
|
]))
|
|
);
|
|
}
|
|
}
|
|
|
|
let data = trajectory_generator(&net, 100, 200.0, Some(6347747169756259));
|
|
let p = match pl.fit(&net, &data, 1, None) {
|
|
params::Params::DiscreteStatesContinousTime(p) => p,
|
|
};
|
|
assert_eq!(p.get_cim().as_ref().unwrap().shape(), [3, 3, 3]);
|
|
assert!(p.get_cim().as_ref().unwrap().abs_diff_eq(
|
|
&arr3(&[
|
|
[[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]],
|
|
[[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]],
|
|
[[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]],
|
|
]),
|
|
0.1
|
|
));
|
|
}
|
|
|
|
#[test]
|
|
fn learn_ternary_cim_MLE() {
|
|
let mle = MLE {};
|
|
learn_ternary_cim(mle);
|
|
}
|
|
|
|
#[test]
|
|
fn learn_ternary_cim_BA() {
|
|
let ba = BayesianApproach { alpha: 1, tau: 1.0 };
|
|
learn_ternary_cim(ba);
|
|
}
|
|
|
|
fn learn_ternary_cim_no_parents<T: ParameterLearning>(pl: T) {
|
|
let mut net = CtbnNetwork::new();
|
|
let n1 = net
|
|
.add_node(generate_discrete_time_continous_node(String::from("n1"), 3))
|
|
.unwrap();
|
|
let n2 = net
|
|
.add_node(generate_discrete_time_continous_node(String::from("n2"), 3))
|
|
.unwrap();
|
|
net.add_edge(n1, n2);
|
|
|
|
match &mut net.get_node_mut(n1) {
|
|
params::Params::DiscreteStatesContinousTime(param) => {
|
|
assert_eq!(
|
|
Ok(()),
|
|
param.set_cim(arr3(&[[
|
|
[-3.0, 2.0, 1.0],
|
|
[1.5, -2.0, 0.5],
|
|
[0.4, 0.6, -1.0]
|
|
]]))
|
|
);
|
|
}
|
|
}
|
|
|
|
match &mut net.get_node_mut(n2) {
|
|
params::Params::DiscreteStatesContinousTime(param) => {
|
|
assert_eq!(
|
|
Ok(()),
|
|
param.set_cim(arr3(&[
|
|
[[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]],
|
|
[[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]],
|
|
[[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]],
|
|
]))
|
|
);
|
|
}
|
|
}
|
|
|
|
let data = trajectory_generator(&net, 100, 200.0, Some(6347747169756259));
|
|
let p = match pl.fit(&net, &data, 0, None) {
|
|
params::Params::DiscreteStatesContinousTime(p) => p,
|
|
};
|
|
assert_eq!(p.get_cim().as_ref().unwrap().shape(), [1, 3, 3]);
|
|
assert!(p.get_cim().as_ref().unwrap().abs_diff_eq(
|
|
&arr3(&[[[-3.0, 2.0, 1.0], [1.5, -2.0, 0.5], [0.4, 0.6, -1.0]]]),
|
|
0.1
|
|
));
|
|
}
|
|
|
|
#[test]
|
|
fn learn_ternary_cim_no_parents_MLE() {
|
|
let mle = MLE {};
|
|
learn_ternary_cim_no_parents(mle);
|
|
}
|
|
|
|
#[test]
|
|
fn learn_ternary_cim_no_parents_BA() {
|
|
let ba = BayesianApproach { alpha: 1, tau: 1.0 };
|
|
learn_ternary_cim_no_parents(ba);
|
|
}
|
|
|
|
fn learn_mixed_discrete_cim<T: ParameterLearning>(pl: T) {
|
|
let mut net = CtbnNetwork::new();
|
|
let n1 = net
|
|
.add_node(generate_discrete_time_continous_node(String::from("n1"), 3))
|
|
.unwrap();
|
|
let n2 = net
|
|
.add_node(generate_discrete_time_continous_node(String::from("n2"), 3))
|
|
.unwrap();
|
|
|
|
let n3 = net
|
|
.add_node(generate_discrete_time_continous_node(String::from("n3"), 4))
|
|
.unwrap();
|
|
net.add_edge(n1, n2);
|
|
net.add_edge(n1, n3);
|
|
net.add_edge(n2, n3);
|
|
|
|
match &mut net.get_node_mut(n1) {
|
|
params::Params::DiscreteStatesContinousTime(param) => {
|
|
assert_eq!(
|
|
Ok(()),
|
|
param.set_cim(arr3(&[[
|
|
[-3.0, 2.0, 1.0],
|
|
[1.5, -2.0, 0.5],
|
|
[0.4, 0.6, -1.0]
|
|
]]))
|
|
);
|
|
}
|
|
}
|
|
|
|
match &mut net.get_node_mut(n2) {
|
|
params::Params::DiscreteStatesContinousTime(param) => {
|
|
assert_eq!(
|
|
Ok(()),
|
|
param.set_cim(arr3(&[
|
|
[[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]],
|
|
[[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]],
|
|
[[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]],
|
|
]))
|
|
);
|
|
}
|
|
}
|
|
|
|
match &mut net.get_node_mut(n3) {
|
|
params::Params::DiscreteStatesContinousTime(param) => {
|
|
assert_eq!(
|
|
Ok(()),
|
|
param.set_cim(arr3(&[
|
|
[
|
|
[-1.0, 0.5, 0.3, 0.2],
|
|
[0.5, -4.0, 2.5, 1.0],
|
|
[2.5, 0.5, -4.0, 1.0],
|
|
[0.7, 0.2, 0.1, -1.0]
|
|
],
|
|
[
|
|
[-6.0, 2.0, 3.0, 1.0],
|
|
[1.5, -3.0, 0.5, 1.0],
|
|
[2.0, 1.3, -5.0, 1.7],
|
|
[2.5, 0.5, 1.0, -4.0]
|
|
],
|
|
[
|
|
[-1.3, 0.3, 0.1, 0.9],
|
|
[1.4, -4.0, 0.5, 2.1],
|
|
[1.0, 1.5, -3.0, 0.5],
|
|
[0.4, 0.3, 0.1, -0.8]
|
|
],
|
|
[
|
|
[-2.0, 1.0, 0.7, 0.3],
|
|
[1.3, -5.9, 2.7, 1.9],
|
|
[2.0, 1.5, -4.0, 0.5],
|
|
[0.2, 0.7, 0.1, -1.0]
|
|
],
|
|
[
|
|
[-6.0, 1.0, 2.0, 3.0],
|
|
[0.5, -3.0, 1.0, 1.5],
|
|
[1.4, 2.1, -4.3, 0.8],
|
|
[0.5, 1.0, 2.5, -4.0]
|
|
],
|
|
[
|
|
[-1.3, 0.9, 0.3, 0.1],
|
|
[0.1, -1.3, 0.2, 1.0],
|
|
[0.5, 1.0, -3.0, 1.5],
|
|
[0.1, 0.4, 0.3, -0.8]
|
|
],
|
|
[
|
|
[-2.0, 1.0, 0.6, 0.4],
|
|
[2.6, -7.1, 1.4, 3.1],
|
|
[5.0, 1.0, -8.0, 2.0],
|
|
[1.4, 0.4, 0.2, -2.0]
|
|
],
|
|
[
|
|
[-3.0, 1.0, 1.5, 0.5],
|
|
[3.0, -6.0, 1.0, 2.0],
|
|
[0.3, 0.5, -1.9, 1.1],
|
|
[5.0, 1.0, 2.0, -8.0]
|
|
],
|
|
[
|
|
[-2.6, 0.6, 0.2, 1.8],
|
|
[2.0, -6.0, 3.0, 1.0],
|
|
[0.1, 0.5, -1.3, 0.7],
|
|
[0.8, 0.6, 0.2, -1.6]
|
|
],
|
|
]))
|
|
);
|
|
}
|
|
}
|
|
|
|
let data = trajectory_generator(&net, 300, 300.0, Some(6347747169756259));
|
|
let p = match pl.fit(&net, &data, 2, None) {
|
|
params::Params::DiscreteStatesContinousTime(p) => p,
|
|
};
|
|
assert_eq!(p.get_cim().as_ref().unwrap().shape(), [9, 4, 4]);
|
|
assert!(p.get_cim().as_ref().unwrap().abs_diff_eq(
|
|
&arr3(&[
|
|
[
|
|
[-1.0, 0.5, 0.3, 0.2],
|
|
[0.5, -4.0, 2.5, 1.0],
|
|
[2.5, 0.5, -4.0, 1.0],
|
|
[0.7, 0.2, 0.1, -1.0]
|
|
],
|
|
[
|
|
[-6.0, 2.0, 3.0, 1.0],
|
|
[1.5, -3.0, 0.5, 1.0],
|
|
[2.0, 1.3, -5.0, 1.7],
|
|
[2.5, 0.5, 1.0, -4.0]
|
|
],
|
|
[
|
|
[-1.3, 0.3, 0.1, 0.9],
|
|
[1.4, -4.0, 0.5, 2.1],
|
|
[1.0, 1.5, -3.0, 0.5],
|
|
[0.4, 0.3, 0.1, -0.8]
|
|
],
|
|
[
|
|
[-2.0, 1.0, 0.7, 0.3],
|
|
[1.3, -5.9, 2.7, 1.9],
|
|
[2.0, 1.5, -4.0, 0.5],
|
|
[0.2, 0.7, 0.1, -1.0]
|
|
],
|
|
[
|
|
[-6.0, 1.0, 2.0, 3.0],
|
|
[0.5, -3.0, 1.0, 1.5],
|
|
[1.4, 2.1, -4.3, 0.8],
|
|
[0.5, 1.0, 2.5, -4.0]
|
|
],
|
|
[
|
|
[-1.3, 0.9, 0.3, 0.1],
|
|
[0.1, -1.3, 0.2, 1.0],
|
|
[0.5, 1.0, -3.0, 1.5],
|
|
[0.1, 0.4, 0.3, -0.8]
|
|
],
|
|
[
|
|
[-2.0, 1.0, 0.6, 0.4],
|
|
[2.6, -7.1, 1.4, 3.1],
|
|
[5.0, 1.0, -8.0, 2.0],
|
|
[1.4, 0.4, 0.2, -2.0]
|
|
],
|
|
[
|
|
[-3.0, 1.0, 1.5, 0.5],
|
|
[3.0, -6.0, 1.0, 2.0],
|
|
[0.3, 0.5, -1.9, 1.1],
|
|
[5.0, 1.0, 2.0, -8.0]
|
|
],
|
|
[
|
|
[-2.6, 0.6, 0.2, 1.8],
|
|
[2.0, -6.0, 3.0, 1.0],
|
|
[0.1, 0.5, -1.3, 0.7],
|
|
[0.8, 0.6, 0.2, -1.6]
|
|
],
|
|
]),
|
|
0.1
|
|
));
|
|
}
|
|
|
|
#[test]
|
|
fn learn_mixed_discrete_cim_MLE() {
|
|
let mle = MLE {};
|
|
learn_mixed_discrete_cim(mle);
|
|
}
|
|
|
|
#[test]
|
|
fn learn_mixed_discrete_cim_BA() {
|
|
let ba = BayesianApproach { alpha: 1, tau: 1.0 };
|
|
learn_mixed_discrete_cim(ba);
|
|
}
|
|
|