A new, blazing-fast learning engine for Continuous Time Bayesian Networks. Written in pure Rust. 🦀
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
reCTBN/tests/parameter_learning.rs

95 lines
3.0 KiB

mod utils;
use utils::*;
use rustyCTBN::parameter_learning::*;
use rustyCTBN::ctbn::*;
use rustyCTBN::network::Network;
use rustyCTBN::node;
use rustyCTBN::params;
use rustyCTBN::tools::*;
use ndarray::arr3;
use std::collections::BTreeSet;
#[macro_use]
extern crate approx;
#[test]
fn learn_binary_cim_MLE() {
let mut net = CtbnNetwork::init();
let n1 = net
.add_node(generate_discrete_time_continous_node(String::from("n1"),2))
.unwrap();
let n2 = net
.add_node(generate_discrete_time_continous_node(String::from("n2"),2))
.unwrap();
net.add_edge(n1, n2);
match &mut net.get_node_mut(n1).params {
params::Params::DiscreteStatesContinousTime(param) => {
param.cim = Some(arr3(&[[[-3.0, 3.0], [2.0, -2.0]]]));
}
}
match &mut net.get_node_mut(n2).params {
params::Params::DiscreteStatesContinousTime(param) => {
param.cim = Some(arr3(&[
[[-1.0, 1.0], [4.0, -4.0]],
[[-6.0, 6.0], [2.0, -2.0]],
]));
}
}
let data = trajectory_generator(Box::new(&net), 100, 100.0);
let mle = MLE{};
let (CIM, M, T) = mle.fit(Box::new(&net), &data, 1, None);
print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T);
assert_eq!(CIM.shape(), [2, 2, 2]);
assert_relative_eq!(-1.0, CIM[[0, 0, 0]], epsilon=0.2);
assert_relative_eq!(-4.0, CIM[[0, 1, 1]], epsilon=0.2);
assert_relative_eq!(-6.0, CIM[[1, 0, 0]], epsilon=0.2);
assert_relative_eq!(-2.0, CIM[[1, 1, 1]], epsilon=0.2);
}
#[test]
fn learn_ternary_cim_MLE() {
let mut net = CtbnNetwork::init();
let n1 = net
.add_node(generate_discrete_time_continous_node(String::from("n1"),3))
.unwrap();
let n2 = net
.add_node(generate_discrete_time_continous_node(String::from("n2"),3))
.unwrap();
net.add_edge(n1, n2);
match &mut net.get_node_mut(n1).params {
params::Params::DiscreteStatesContinousTime(param) => {
param.cim = Some(arr3(&[[[-3.0, 2.0, 1.0],
[1.5, -2.0, 0.5],
[0.4, 0.6, -1.0]]]));
}
}
match &mut net.get_node_mut(n2).params {
params::Params::DiscreteStatesContinousTime(param) => {
param.cim = Some(arr3(&[
[[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]],
[[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]],
[[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]],
]));
}
}
let data = trajectory_generator(Box::new(&net), 100, 200.0);
let mle = MLE{};
let (CIM, M, T) = mle.fit(Box::new(&net), &data, 1, None);
print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T);
assert_eq!(CIM.shape(), [3, 3, 3]);
assert_relative_eq!(-1.0, CIM[[0, 0, 0]], epsilon=0.2);
assert_relative_eq!(-4.0, CIM[[0, 1, 1]], epsilon=0.2);
assert_relative_eq!(-1.0, CIM[[0, 2, 2]], epsilon=0.2);
assert_relative_eq!(0.5, CIM[[0, 0, 1]], epsilon=0.2);
}