mod utils; use utils::*; use rustyCTBN::parameter_learning::*; use rustyCTBN::ctbn::*; use rustyCTBN::network::Network; use rustyCTBN::node; use rustyCTBN::params; use rustyCTBN::tools::*; use ndarray::arr3; use std::collections::BTreeSet; #[macro_use] extern crate approx; #[test] fn learn_binary_cim_MLE() { let mut net = CtbnNetwork::init(); let n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),2)) .unwrap(); let n2 = net .add_node(generate_discrete_time_continous_node(String::from("n2"),2)) .unwrap(); net.add_edge(n1, n2); match &mut net.get_node_mut(n1).params { params::Params::DiscreteStatesContinousTime(param) => { param.cim = Some(arr3(&[[[-3.0, 3.0], [2.0, -2.0]]])); } } match &mut net.get_node_mut(n2).params { params::Params::DiscreteStatesContinousTime(param) => { param.cim = Some(arr3(&[ [[-1.0, 1.0], [4.0, -4.0]], [[-6.0, 6.0], [2.0, -2.0]], ])); } } let data = trajectory_generator(&net, 100, 100.0); let mle = MLE{}; let (CIM, M, T) = mle.fit(&net, &data, 1, None); print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T); assert_eq!(CIM.shape(), [2, 2, 2]); assert!(CIM.abs_diff_eq(&arr3(&[ [[-1.0, 1.0], [4.0, -4.0]], [[-6.0, 6.0], [2.0, -2.0]], ]), 0.2)); } #[test] fn learn_ternary_cim_MLE() { let mut net = CtbnNetwork::init(); let n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),3)) .unwrap(); let n2 = net .add_node(generate_discrete_time_continous_node(String::from("n2"),3)) .unwrap(); net.add_edge(n1, n2); match &mut net.get_node_mut(n1).params { params::Params::DiscreteStatesContinousTime(param) => { param.cim = Some(arr3(&[[[-3.0, 2.0, 1.0], [1.5, -2.0, 0.5], [0.4, 0.6, -1.0]]])); } } match &mut net.get_node_mut(n2).params { params::Params::DiscreteStatesContinousTime(param) => { param.cim = Some(arr3(&[ [[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]], [[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]], [[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]], ])); } } let data = trajectory_generator(&net, 100, 200.0); let mle = MLE{}; let (CIM, M, T) = mle.fit(&net, &data, 1, None); print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T); assert_eq!(CIM.shape(), [3, 3, 3]); assert!(CIM.abs_diff_eq(&arr3(&[ [[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]], [[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]], [[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]], ]), 0.2)); } #[test] fn learn_ternary_cim_MLE_no_parents() { let mut net = CtbnNetwork::init(); let n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),3)) .unwrap(); let n2 = net .add_node(generate_discrete_time_continous_node(String::from("n2"),3)) .unwrap(); net.add_edge(n1, n2); match &mut net.get_node_mut(n1).params { params::Params::DiscreteStatesContinousTime(param) => { param.cim = Some(arr3(&[[[-3.0, 2.0, 1.0], [1.5, -2.0, 0.5], [0.4, 0.6, -1.0]]])); } } match &mut net.get_node_mut(n2).params { params::Params::DiscreteStatesContinousTime(param) => { param.cim = Some(arr3(&[ [[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]], [[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]], [[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]], ])); } } let data = trajectory_generator(&net, 100, 200.0); let mle = MLE{}; let (CIM, M, T) = mle.fit(&net, &data, 0, None); print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T); assert_eq!(CIM.shape(), [1, 3, 3]); assert!(CIM.abs_diff_eq(&arr3(&[[[-3.0, 2.0, 1.0], [1.5, -2.0, 0.5], [0.4, 0.6, -1.0]]]), 0.2)); }