mod utils; use utils::*; use rustyCTBN::ctbn::*; use rustyCTBN::network::Network; use rustyCTBN::tools::*; use rustyCTBN::structure_learning::score_function::*; use rustyCTBN::structure_learning::score_based_algorithm::*; use rustyCTBN::structure_learning::StructureLearningAlgorithm; use ndarray::{arr1, arr2, arr3}; use std::collections::BTreeSet; use rustyCTBN::params; #[macro_use] extern crate approx; #[test] fn simple_log_likelihood() { let mut net = CtbnNetwork::init(); let n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),2)) .unwrap(); let trj = Trajectory{ time: arr1(&[0.0,0.1,0.3]), events: arr2(&[[0],[1],[1]])}; let dataset = Dataset{ trajectories: vec![trj]}; let ll = LogLikelihood::init(1, 1.0); assert_abs_diff_eq!(0.04257, ll.call(&net, n1, &BTreeSet::new(), &dataset), epsilon=1e-3); } #[test] fn simple_bic() { let mut net = CtbnNetwork::init(); let n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),2)) .unwrap(); let trj = Trajectory{ time: arr1(&[0.0,0.1,0.3]), events: arr2(&[[0],[1],[1]])}; let dataset = Dataset{ trajectories: vec![trj]}; let ll = BIC::init(1, 1.0); assert_abs_diff_eq!(-0.65058, ll.call(&net, n1, &BTreeSet::new(), &dataset), epsilon=1e-3); } fn learn_ternary_net_2_nodes (sl: T) { let mut net = CtbnNetwork::init(); let n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),3)) .unwrap(); let n2 = net .add_node(generate_discrete_time_continous_node(String::from("n2"),3)) .unwrap(); net.add_edge(n1, n2); match &mut net.get_node_mut(n1).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[[[-3.0, 2.0, 1.0], [1.5, -2.0, 0.5], [0.4, 0.6, -1.0]]]))); } } match &mut net.get_node_mut(n2).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[ [[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]], [[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]], [[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]], ]))); } } let data = trajectory_generator(&net, 100, 20.0, Some(6347747169756259),); let net = sl.fit(net, &data); assert_eq!(BTreeSet::from_iter(vec![n1]), net.get_parent_set(n2)); assert_eq!(BTreeSet::new(), net.get_parent_set(n1)); } #[test] pub fn learn_ternary_net_2_nodes_hill_climbing_ll() { let ll = LogLikelihood::init(1, 1.0); let hl = HillClimbing::init(ll); learn_ternary_net_2_nodes(hl); } #[test] pub fn learn_ternary_net_2_nodes_hill_climbing_bic() { let bic = BIC::init(1, 1.0); let hl = HillClimbing::init(bic); learn_ternary_net_2_nodes(hl); } fn learn_mixed_discrete_net_3_nodes (sl: T) { let mut net = CtbnNetwork::init(); let n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),3)) .unwrap(); let n2 = net .add_node(generate_discrete_time_continous_node(String::from("n2"),3)) .unwrap(); let n3 = net .add_node(generate_discrete_time_continous_node(String::from("n3"),4)) .unwrap(); net.add_edge(n1, n2); net.add_edge(n1, n3); net.add_edge(n2, n3); match &mut net.get_node_mut(n1).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[[[-3.0, 2.0, 1.0], [1.5, -2.0, 0.5], [0.4, 0.6, -1.0]]]))); } } match &mut net.get_node_mut(n2).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[ [[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]], [[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]], [[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]], ]))); } } match &mut net.get_node_mut(n3).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[ [[-1.0, 0.5, 0.3, 0.2], [0.5, -4.0, 2.5, 1.0], [2.5, 0.5, -4.0, 1.0], [0.7, 0.2, 0.1, -1.0]], [[-6.0, 2.0, 3.0, 1.0], [1.5, -3.0, 0.5, 1.0], [2.0, 1.3, -5.0 ,1.7], [2.5, 0.5, 1.0, -4.0]], [[-1.3, 0.3, 0.1, 0.9], [1.4, -4.0, 0.5, 2.1], [1.0, 1.5, -3.0, 0.5], [0.4, 0.3, 0.1, -0.8]], [[-2.0, 1.0, 0.7, 0.3], [1.3, -5.9, 2.7, 1.9], [2.0, 1.5, -4.0, 0.5], [0.2, 0.7, 0.1, -1.0]], [[-6.0, 1.0, 2.0, 3.0], [0.5, -3.0, 1.0, 1.5], [1.4, 2.1, -4.3, 0.8], [0.5, 1.0, 2.5, -4.0]], [[-1.3, 0.9, 0.3, 0.1], [0.1, -1.3, 0.2, 1.0], [0.5, 1.0, -3.0, 1.5], [0.1, 0.4, 0.3, -0.8]], [[-2.0, 1.0, 0.6, 0.4], [2.6, -7.1, 1.4, 3.1], [5.0, 1.0, -8.0, 2.0], [1.4, 0.4, 0.2, -2.0]], [[-3.0, 1.0, 1.5, 0.5], [3.0, -6.0, 1.0, 2.0], [0.3, 0.5, -1.9, 1.1], [5.0, 1.0, 2.0, -8.0]], [[-2.6, 0.6, 0.2, 1.8], [2.0, -6.0, 3.0, 1.0], [0.1, 0.5, -1.3, 0.7], [0.8, 0.6, 0.2, -1.6]], ]))); } } let data = trajectory_generator(&net, 300, 30.0, Some(6347747169756259),); let net = sl.fit(net, &data); assert_eq!(BTreeSet::new(), net.get_parent_set(n1)); assert_eq!(BTreeSet::from_iter(vec![n1]), net.get_parent_set(n2)); assert_eq!(BTreeSet::from_iter(vec![n1, n2]), net.get_parent_set(n3)); } #[test] pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_ll() { let ll = LogLikelihood::init(1, 1.0); let hl = HillClimbing::init(ll); learn_mixed_discrete_net_3_nodes(hl); } #[test] pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_bic() { let bic = BIC::init(1, 1.0); let hl = HillClimbing::init(bic); learn_mixed_discrete_net_3_nodes(hl); }