mod utils; use utils::*; use reCTBN::ctbn::*; use reCTBN::network::Network; use reCTBN::tools::*; use reCTBN::structure_learning::score_function::*; use reCTBN::structure_learning::score_based_algorithm::*; use reCTBN::structure_learning::StructureLearningAlgorithm; use ndarray::{arr1, arr2, arr3}; use std::collections::BTreeSet; use reCTBN::params; #[macro_use] extern crate approx; #[test] fn simple_score_test() { let mut net = CtbnNetwork::new(); let n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),2)) .unwrap(); let trj = Trajectory::new( arr1(&[0.0,0.1,0.3]), arr2(&[[0],[1],[1]])); let dataset = Dataset::new(vec![trj]); let ll = LogLikelihood::new(1, 1.0); assert_abs_diff_eq!(0.04257, ll.call(&net, n1, &BTreeSet::new(), &dataset), epsilon=1e-3); } #[test] fn simple_bic() { let mut net = CtbnNetwork::new(); let n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),2)) .unwrap(); let trj = Trajectory::new( arr1(&[0.0,0.1,0.3]), arr2(&[[0],[1],[1]])); let dataset = Dataset::new(vec![trj]); let bic = BIC::new(1, 1.0); assert_abs_diff_eq!(-0.65058, bic.call(&net, n1, &BTreeSet::new(), &dataset), epsilon=1e-3); } fn check_compatibility_between_dataset_and_network (sl: T) { let mut net = CtbnNetwork::new(); let n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),3)) .unwrap(); let n2 = net .add_node(generate_discrete_time_continous_node(String::from("n2"),3)) .unwrap(); net.add_edge(n1, n2); match &mut net.get_node_mut(n1).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[[[-3.0, 2.0, 1.0], [1.5, -2.0, 0.5], [0.4, 0.6, -1.0]]]))); } } match &mut net.get_node_mut(n2).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[ [[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]], [[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]], [[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]], ]))); } } let data = trajectory_generator(&net, 100, 20.0, Some(6347747169756259),); let mut net = CtbnNetwork::new(); let _n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),3)) .unwrap(); let net = sl.fit_transform(net, &data); } #[test] #[should_panic] pub fn check_compatibility_between_dataset_and_network_hill_climbing() { let ll = LogLikelihood::new(1, 1.0); let hl = HillClimbing::new(ll, None); check_compatibility_between_dataset_and_network(hl); } fn learn_ternary_net_2_nodes (sl: T) { let mut net = CtbnNetwork::new(); let n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),3)) .unwrap(); let n2 = net .add_node(generate_discrete_time_continous_node(String::from("n2"),3)) .unwrap(); net.add_edge(n1, n2); match &mut net.get_node_mut(n1).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[[[-3.0, 2.0, 1.0], [1.5, -2.0, 0.5], [0.4, 0.6, -1.0]]]))); } } match &mut net.get_node_mut(n2).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[ [[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]], [[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]], [[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]], ]))); } } let data = trajectory_generator(&net, 100, 20.0, Some(6347747169756259),); let net = sl.fit_transform(net, &data); assert_eq!(BTreeSet::from_iter(vec![n1]), net.get_parent_set(n2)); assert_eq!(BTreeSet::new(), net.get_parent_set(n1)); } #[test] pub fn learn_ternary_net_2_nodes_hill_climbing_ll() { let ll = LogLikelihood::new(1, 1.0); let hl = HillClimbing::new(ll, None); learn_ternary_net_2_nodes(hl); } #[test] pub fn learn_ternary_net_2_nodes_hill_climbing_bic() { let bic = BIC::new(1, 1.0); let hl = HillClimbing::new(bic, None); learn_ternary_net_2_nodes(hl); } fn get_mixed_discrete_net_3_nodes_with_data() -> (CtbnNetwork, Dataset) { let mut net = CtbnNetwork::new(); let n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),3)) .unwrap(); let n2 = net .add_node(generate_discrete_time_continous_node(String::from("n2"),3)) .unwrap(); let n3 = net .add_node(generate_discrete_time_continous_node(String::from("n3"),4)) .unwrap(); net.add_edge(n1, n2); net.add_edge(n1, n3); net.add_edge(n2, n3); match &mut net.get_node_mut(n1).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[[[-3.0, 2.0, 1.0], [1.5, -2.0, 0.5], [0.4, 0.6, -1.0]]]))); } } match &mut net.get_node_mut(n2).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[ [[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]], [[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]], [[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]], ]))); } } match &mut net.get_node_mut(n3).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[ [[-1.0, 0.5, 0.3, 0.2], [0.5, -4.0, 2.5, 1.0], [2.5, 0.5, -4.0, 1.0], [0.7, 0.2, 0.1, -1.0]], [[-6.0, 2.0, 3.0, 1.0], [1.5, -3.0, 0.5, 1.0], [2.0, 1.3, -5.0 ,1.7], [2.5, 0.5, 1.0, -4.0]], [[-1.3, 0.3, 0.1, 0.9], [1.4, -4.0, 0.5, 2.1], [1.0, 1.5, -3.0, 0.5], [0.4, 0.3, 0.1, -0.8]], [[-2.0, 1.0, 0.7, 0.3], [1.3, -5.9, 2.7, 1.9], [2.0, 1.5, -4.0, 0.5], [0.2, 0.7, 0.1, -1.0]], [[-6.0, 1.0, 2.0, 3.0], [0.5, -3.0, 1.0, 1.5], [1.4, 2.1, -4.3, 0.8], [0.5, 1.0, 2.5, -4.0]], [[-1.3, 0.9, 0.3, 0.1], [0.1, -1.3, 0.2, 1.0], [0.5, 1.0, -3.0, 1.5], [0.1, 0.4, 0.3, -0.8]], [[-2.0, 1.0, 0.6, 0.4], [2.6, -7.1, 1.4, 3.1], [5.0, 1.0, -8.0, 2.0], [1.4, 0.4, 0.2, -2.0]], [[-3.0, 1.0, 1.5, 0.5], [3.0, -6.0, 1.0, 2.0], [0.3, 0.5, -1.9, 1.1], [5.0, 1.0, 2.0, -8.0]], [[-2.6, 0.6, 0.2, 1.8], [2.0, -6.0, 3.0, 1.0], [0.1, 0.5, -1.3, 0.7], [0.8, 0.6, 0.2, -1.6]], ]))); } } let data = trajectory_generator(&net, 300, 30.0, Some(6347747169756259),); return (net, data); } fn learn_mixed_discrete_net_3_nodes (sl: T) { let (net, data) = get_mixed_discrete_net_3_nodes_with_data(); let net = sl.fit_transform(net, &data); assert_eq!(BTreeSet::new(), net.get_parent_set(0)); assert_eq!(BTreeSet::from_iter(vec![0]), net.get_parent_set(1)); assert_eq!(BTreeSet::from_iter(vec![0, 1]), net.get_parent_set(2)); } #[test] pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_ll() { let ll = LogLikelihood::new(1, 1.0); let hl = HillClimbing::new(ll, None); learn_mixed_discrete_net_3_nodes(hl); } #[test] pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_bic() { let bic = BIC::new(1, 1.0); let hl = HillClimbing::new(bic, None); learn_mixed_discrete_net_3_nodes(hl); } fn learn_mixed_discrete_net_3_nodes_1_parent_constraint (sl: T) { let (net, data) = get_mixed_discrete_net_3_nodes_with_data(); let net = sl.fit_transform(net, &data); assert_eq!(BTreeSet::new(), net.get_parent_set(0)); assert_eq!(BTreeSet::from_iter(vec![0]), net.get_parent_set(1)); assert_eq!(BTreeSet::from_iter(vec![0]), net.get_parent_set(2)); } #[test] pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_ll_1_parent_constraint() { let ll = LogLikelihood::new(1, 1.0); let hl = HillClimbing::new(ll, Some(1)); learn_mixed_discrete_net_3_nodes_1_parent_constraint(hl); } #[test] pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_bic_1_parent_constraint() { let bic = BIC::new(1, 1.0); let hl = HillClimbing::new(bic, Some(1)); learn_mixed_discrete_net_3_nodes_1_parent_constraint(hl); }