mod utils; use utils::*; use rustyCTBN::ctbn::*; use rustyCTBN::network::Network; use rustyCTBN::tools::*; use rustyCTBN::structure_learning::*; use ndarray::{arr1, arr2}; use std::collections::BTreeSet; #[macro_use] extern crate approx; #[test] fn simple_log_likelihood() { let mut net = CtbnNetwork::init(); let n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),2)) .unwrap(); let trj = Trajectory{ time: arr1(&[0.0,0.1,0.3]), events: arr2(&[[0],[1],[1]])}; let dataset = Dataset{ trajectories: vec![trj]}; let ll = LogLikelihood::init(1, 1.0); assert_abs_diff_eq!(0.04257, ll.call(&net, n1, &BTreeSet::new(), &dataset), epsilon=1e-3); } #[test] fn simple_bic() { let mut net = CtbnNetwork::init(); let n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),2)) .unwrap(); let trj = Trajectory{ time: arr1(&[0.0,0.1,0.3]), events: arr2(&[[0],[1],[1]])}; let dataset = Dataset{ trajectories: vec![trj]}; let ll = BIC::init(1, 1.0); assert_abs_diff_eq!(-0.65058, ll.call(&net, n1, &BTreeSet::new(), &dataset), epsilon=1e-3); }