mod utils; use utils::*; use rustyCTBN::parameter_learning::*; use rustyCTBN::ctbn::*; use rustyCTBN::network::Network; use rustyCTBN::node; use rustyCTBN::params; use rustyCTBN::tools::*; use ndarray::arr3; use std::collections::BTreeSet; #[macro_use] extern crate approx; fn learn_binary_cim (pl: T) { let mut net = CtbnNetwork::init(); let n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),2)) .unwrap(); let n2 = net .add_node(generate_discrete_time_continous_node(String::from("n2"),2)) .unwrap(); net.add_edge(n1, n2); match &mut net.get_node_mut(n1).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[[[-3.0, 3.0], [2.0, -2.0]]]))); } } match &mut net.get_node_mut(n2).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[ [[-1.0, 1.0], [4.0, -4.0]], [[-6.0, 6.0], [2.0, -2.0]], ]))); } } let data = trajectory_generator(&net, 100, 100.0); let (CIM, M, T) = pl.fit(&net, &data, 1, None); print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T); assert_eq!(CIM.shape(), [2, 2, 2]); assert!(CIM.abs_diff_eq(&arr3(&[ [[-1.0, 1.0], [4.0, -4.0]], [[-6.0, 6.0], [2.0, -2.0]], ]), 0.2)); } #[test] fn learn_binary_cim_MLE() { let mle = MLE{}; learn_binary_cim(mle); } #[test] fn learn_binary_cim_BA() { let ba = BayesianApproach{ alpha: 1, tau: 1.0}; learn_binary_cim(ba); } fn learn_ternary_cim (pl: T) { let mut net = CtbnNetwork::init(); let n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),3)) .unwrap(); let n2 = net .add_node(generate_discrete_time_continous_node(String::from("n2"),3)) .unwrap(); net.add_edge(n1, n2); match &mut net.get_node_mut(n1).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[[[-3.0, 2.0, 1.0], [1.5, -2.0, 0.5], [0.4, 0.6, -1.0]]]))); } } match &mut net.get_node_mut(n2).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[ [[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]], [[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]], [[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]], ]))); } } let data = trajectory_generator(&net, 100, 200.0); let (CIM, M, T) = pl.fit(&net, &data, 1, None); print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T); assert_eq!(CIM.shape(), [3, 3, 3]); assert!(CIM.abs_diff_eq(&arr3(&[ [[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]], [[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]], [[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]], ]), 0.2)); } #[test] fn learn_ternary_cim_MLE() { let mle = MLE{}; learn_ternary_cim(mle); } #[test] fn learn_ternary_cim_BA() { let ba = BayesianApproach{ alpha: 1, tau: 1.0}; learn_ternary_cim(ba); } fn learn_ternary_cim_no_parents (pl: T) { let mut net = CtbnNetwork::init(); let n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),3)) .unwrap(); let n2 = net .add_node(generate_discrete_time_continous_node(String::from("n2"),3)) .unwrap(); net.add_edge(n1, n2); match &mut net.get_node_mut(n1).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[[[-3.0, 2.0, 1.0], [1.5, -2.0, 0.5], [0.4, 0.6, -1.0]]]))); } } match &mut net.get_node_mut(n2).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[ [[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]], [[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]], [[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]], ]))); } } let data = trajectory_generator(&net, 100, 200.0); let (CIM, M, T) = pl.fit(&net, &data, 0, None); print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T); assert_eq!(CIM.shape(), [1, 3, 3]); assert!(CIM.abs_diff_eq(&arr3(&[[[-3.0, 2.0, 1.0], [1.5, -2.0, 0.5], [0.4, 0.6, -1.0]]]), 0.2)); } #[test] fn learn_ternary_cim_no_parents_MLE() { let mle = MLE{}; learn_ternary_cim_no_parents(mle); } #[test] fn learn_ternary_cim_no_parents_BA() { let ba = BayesianApproach{ alpha: 1, tau: 1.0}; learn_ternary_cim_no_parents(ba); } fn learn_mixed_discrete_cim (pl: T) { let mut net = CtbnNetwork::init(); let n1 = net .add_node(generate_discrete_time_continous_node(String::from("n1"),3)) .unwrap(); let n2 = net .add_node(generate_discrete_time_continous_node(String::from("n2"),3)) .unwrap(); let n3 = net .add_node(generate_discrete_time_continous_node(String::from("n3"),4)) .unwrap(); net.add_edge(n1, n2); net.add_edge(n1, n3); net.add_edge(n2, n3); match &mut net.get_node_mut(n1).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[[[-3.0, 2.0, 1.0], [1.5, -2.0, 0.5], [0.4, 0.6, -1.0]]]))); } } match &mut net.get_node_mut(n2).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[ [[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]], [[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]], [[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]], ]))); } } match &mut net.get_node_mut(n3).params { params::Params::DiscreteStatesContinousTime(param) => { assert_eq!(Ok(()), param.set_cim(arr3(&[ [[-1.0, 0.5, 0.3, 0.2], [0.5, -4.0, 2.5, 1.0], [2.5, 0.5, -4.0, 1.0], [0.7, 0.2, 0.1, -1.0]], [[-6.0, 2.0, 3.0, 1.0], [1.5, -3.0, 0.5, 1.0], [2.0, 1.3, -5.0 ,1.7], [2.5, 0.5, 1.0, -4.0]], [[-1.3, 0.3, 0.1, 0.9], [1.4, -4.0, 0.5, 2.1], [1.0, 1.5, -3.0, 0.5], [0.4, 0.3, 0.1, -0.8]], [[-2.0, 1.0, 0.7, 0.3], [1.3, -5.9, 2.7, 1.9], [2.0, 1.5, -4.0, 0.5], [0.2, 0.7, 0.1, -1.0]], [[-6.0, 1.0, 2.0, 3.0], [0.5, -3.0, 1.0, 1.5], [1.4, 2.1, -4.3, 0.8], [0.5, 1.0, 2.5, -4.0]], [[-1.3, 0.9, 0.3, 0.1], [0.1, -1.3, 0.2, 1.0], [0.5, 1.0, -3.0, 1.5], [0.1, 0.4, 0.3, -0.8]], [[-2.0, 1.0, 0.6, 0.4], [2.6, -7.1, 1.4, 3.1], [5.0, 1.0, -8.0, 2.0], [1.4, 0.4, 0.2, -2.0]], [[-3.0, 1.0, 1.5, 0.5], [3.0, -6.0, 1.0, 2.0], [0.3, 0.5, -1.9, 1.1], [5.0, 1.0, 2.0, -8.0]], [[-2.6, 0.6, 0.2, 1.8], [2.0, -6.0, 3.0, 1.0], [0.1, 0.5, -1.3, 0.7], [0.8, 0.6, 0.2, -1.6]], ]))); } } let data = trajectory_generator(&net, 300, 300.0); let (CIM, M, T) = pl.fit(&net, &data, 2, None); print!("CIM: {:?}\nM: {:?}\nT: {:?}\n", CIM, M, T); assert_eq!(CIM.shape(), [9, 4, 4]); assert!(CIM.abs_diff_eq(&arr3(&[ [[-1.0, 0.5, 0.3, 0.2], [0.5, -4.0, 2.5, 1.0], [2.5, 0.5, -4.0, 1.0], [0.7, 0.2, 0.1, -1.0]], [[-6.0, 2.0, 3.0, 1.0], [1.5, -3.0, 0.5, 1.0], [2.0, 1.3, -5.0 , 1.7], [2.5, 0.5, 1.0, -4.0]], [[-1.3, 0.3, 0.1, 0.9], [1.4, -4.0, 0.5, 2.1], [1.0, 1.5, -3.0, 0.5], [0.4, 0.3, 0.1, -0.8]], [[-2.0, 1.0, 0.7, 0.3], [1.3, -5.9, 2.7, 1.9], [2.0, 1.5, -4.0, 0.5], [0.2, 0.7, 0.1, -1.0]], [[-6.0, 1.0, 2.0, 3.0], [0.5, -3.0, 1.0, 1.5], [1.4, 2.1, -4.3, 0.8], [0.5, 1.0, 2.5, -4.0]], [[-1.3, 0.9, 0.3, 0.1], [0.1, -1.3, 0.2, 1.0], [0.5, 1.0, -3.0, 1.5], [0.1, 0.4, 0.3, -0.8]], [[-2.0, 1.0, 0.6, 0.4], [2.6, -7.1, 1.4, 3.1], [5.0, 1.0, -8.0, 2.0], [1.4, 0.4, 0.2, -2.0]], [[-3.0, 1.0, 1.5, 0.5], [3.0, -6.0, 1.0, 2.0], [0.3, 0.5, -1.9, 1.1], [5.0, 1.0, 2.0, -8.0]], [[-2.6, 0.6, 0.2, 1.8], [2.0, -6.0, 3.0, 1.0], [0.1, 0.5, -1.3, 0.7], [0.8, 0.6, 0.2, -1.6]], ]), 0.2)); } #[test] fn learn_mixed_discrete_cim_MLE() { let mle = MLE{}; learn_mixed_discrete_cim(mle); } #[test] fn learn_mixed_discrete_cim_BA() { let ba = BayesianApproach{ alpha: 1, tau: 1.0}; learn_mixed_discrete_cim(ba); }