|
|
|
@ -2,7 +2,6 @@ use crate::network; |
|
|
|
|
use crate::params::*; |
|
|
|
|
use crate::tools; |
|
|
|
|
use ndarray::prelude::*; |
|
|
|
|
use ndarray::{concatenate, Slice}; |
|
|
|
|
use std::collections::BTreeSet; |
|
|
|
|
|
|
|
|
|
pub trait ParameterLearning{ |
|
|
|
@ -137,15 +136,13 @@ impl ParameterLearning for BayesianApproach { |
|
|
|
|
node: usize, |
|
|
|
|
parent_set: Option<BTreeSet<usize>>, |
|
|
|
|
) -> Params { |
|
|
|
|
//TODO: make this function general. Now it works only on ContinousTimeDiscreteState nodes
|
|
|
|
|
|
|
|
|
|
//Use parent_set from parameter if present. Otherwise use parent_set from network.
|
|
|
|
|
let parent_set = match parent_set { |
|
|
|
|
Some(p) => p, |
|
|
|
|
None => net.get_parent_set(node), |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
let (mut M, mut T) = sufficient_statistics(net, dataset, node.clone(), &parent_set); |
|
|
|
|
let (M, T) = sufficient_statistics(net, dataset, node.clone(), &parent_set); |
|
|
|
|
|
|
|
|
|
let alpha: f64 = self.alpha as f64 / M.shape()[0] as f64; |
|
|
|
|
let tau: f64 = self.tau as f64 / M.shape()[0] as f64; |
|
|
|
|