diff --git a/tests/structure_learning.rs b/tests/structure_learning.rs index 2ddd513..e0e6d9b 100644 --- a/tests/structure_learning.rs +++ b/tests/structure_learning.rs @@ -85,7 +85,7 @@ fn learn_ternary_net_2_nodes (sl: T) { } } - let data = trajectory_generator(&net, 100, 200.0, Some(6347747169756259),); + let data = trajectory_generator(&net, 100, 20.0, Some(6347747169756259),); let net = sl.call(net, &data); assert_eq!(BTreeSet::from_iter(vec![n1]), net.get_parent_set(n2)); @@ -106,3 +106,82 @@ pub fn learn_ternary_net_2_nodes_hill_climbing_bic() { let hl = HillClimbing::init(bic); learn_ternary_net_2_nodes(hl); } + + + +fn learn_mixed_discrete_net_3_nodes (sl: T) { + let mut net = CtbnNetwork::init(); + let n1 = net + .add_node(generate_discrete_time_continous_node(String::from("n1"),3)) + .unwrap(); + let n2 = net + .add_node(generate_discrete_time_continous_node(String::from("n2"),3)) + .unwrap(); + + let n3 = net + .add_node(generate_discrete_time_continous_node(String::from("n3"),4)) + .unwrap(); + net.add_edge(n1, n2); + net.add_edge(n1, n3); + net.add_edge(n2, n3); + + match &mut net.get_node_mut(n1).params { + params::Params::DiscreteStatesContinousTime(param) => { + assert_eq!(Ok(()), param.set_cim(arr3(&[[[-3.0, 2.0, 1.0], + [1.5, -2.0, 0.5], + [0.4, 0.6, -1.0]]]))); + } + } + + match &mut net.get_node_mut(n2).params { + params::Params::DiscreteStatesContinousTime(param) => { + assert_eq!(Ok(()), param.set_cim(arr3(&[ + [[-1.0, 0.5, 0.5], [3.0, -4.0, 1.0], [0.9, 0.1, -1.0]], + [[-6.0, 2.0, 4.0], [1.5, -2.0, 0.5], [3.0, 1.0, -4.0]], + [[-1.0, 0.1, 0.9], [2.0, -2.5, 0.5], [0.9, 0.1, -1.0]], + ]))); + } + } + + + match &mut net.get_node_mut(n3).params { + params::Params::DiscreteStatesContinousTime(param) => { + assert_eq!(Ok(()), param.set_cim(arr3(&[ + [[-1.0, 0.5, 0.3, 0.2], [0.5, -4.0, 2.5, 1.0], [2.5, 0.5, -4.0, 1.0], [0.7, 0.2, 0.1, -1.0]], + [[-6.0, 2.0, 3.0, 1.0], [1.5, -3.0, 0.5, 1.0], [2.0, 1.3, -5.0 ,1.7], [2.5, 0.5, 1.0, -4.0]], + [[-1.3, 0.3, 0.1, 0.9], [1.4, -4.0, 0.5, 2.1], [1.0, 1.5, -3.0, 0.5], [0.4, 0.3, 0.1, -0.8]], + + [[-2.0, 1.0, 0.7, 0.3], [1.3, -5.9, 2.7, 1.9], [2.0, 1.5, -4.0, 0.5], [0.2, 0.7, 0.1, -1.0]], + [[-6.0, 1.0, 2.0, 3.0], [0.5, -3.0, 1.0, 1.5], [1.4, 2.1, -4.3, 0.8], [0.5, 1.0, 2.5, -4.0]], + [[-1.3, 0.9, 0.3, 0.1], [0.1, -1.3, 0.2, 1.0], [0.5, 1.0, -3.0, 1.5], [0.1, 0.4, 0.3, -0.8]], + + [[-2.0, 1.0, 0.6, 0.4], [2.6, -7.1, 1.4, 3.1], [5.0, 1.0, -8.0, 2.0], [1.4, 0.4, 0.2, -2.0]], + [[-3.0, 1.0, 1.5, 0.5], [3.0, -6.0, 1.0, 2.0], [0.3, 0.5, -1.9, 1.1], [5.0, 1.0, 2.0, -8.0]], + [[-2.6, 0.6, 0.2, 1.8], [2.0, -6.0, 3.0, 1.0], [0.1, 0.5, -1.3, 0.7], [0.8, 0.6, 0.2, -1.6]], + ]))); + } + } + + + let data = trajectory_generator(&net, 300, 30.0, Some(6347747169756259),); + let net = sl.call(net, &data); + + assert_eq!(BTreeSet::new(), net.get_parent_set(n1)); + assert_eq!(BTreeSet::from_iter(vec![n1]), net.get_parent_set(n2)); + assert_eq!(BTreeSet::from_iter(vec![n1, n2]), net.get_parent_set(n3)); +} + + +#[test] +pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_ll() { + let ll = LogLikelihood::init(1, 1.0); + let hl = HillClimbing::init(ll); + learn_mixed_discrete_net_3_nodes(hl); +} + +#[test] +pub fn learn_mixed_discrete_net_3_nodes_hill_climbing_bic() { + let bic = BIC::init(1, 1.0); + let hl = HillClimbing::init(bic); + learn_mixed_discrete_net_3_nodes(hl); +}