|
|
|
|
|
|
|
use reCTBN::tools::*;
|
|
|
|
use reCTBN::network::Network;
|
|
|
|
use reCTBN::ctbn::*;
|
|
|
|
use reCTBN::node;
|
|
|
|
use reCTBN::params;
|
|
|
|
use std::collections::BTreeSet;
|
|
|
|
use ndarray::{arr1, arr2, arr3};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#[macro_use]
|
|
|
|
extern crate approx;
|
|
|
|
|
|
|
|
mod utils;
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn run_sampling() {
|
|
|
|
let mut net = CtbnNetwork::new();
|
|
|
|
let n1 = net.add_node(utils::generate_discrete_time_continous_node(String::from("n1"),2)).unwrap();
|
|
|
|
let n2 = net.add_node(utils::generate_discrete_time_continous_node(String::from("n2"),2)).unwrap();
|
|
|
|
net.add_edge(n1, n2);
|
|
|
|
|
|
|
|
match &mut net.get_node_mut(n1).params {
|
|
|
|
params::Params::DiscreteStatesContinousTime(param) => {
|
|
|
|
param.set_cim(arr3(&[[[-3.0,3.0],[2.0,-2.0]]]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
match &mut net.get_node_mut(n2).params {
|
|
|
|
params::Params::DiscreteStatesContinousTime(param) => {
|
|
|
|
param.set_cim(arr3(&[
|
|
|
|
[[-1.0,1.0],[4.0,-4.0]],
|
|
|
|
[[-6.0,6.0],[2.0,-2.0]]]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
let data = trajectory_generator(&net, 4, 1.0, Some(6347747169756259),);
|
|
|
|
|
|
|
|
assert_eq!(4, data.get_trajectories().len());
|
|
|
|
assert_relative_eq!(1.0, data.get_trajectories()[0].get_time()[data.get_trajectories()[0].get_time().len()-1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
#[should_panic]
|
|
|
|
fn trajectory_wrong_shape() {
|
|
|
|
let time = arr1(&[0.0, 0.2]);
|
|
|
|
let events = arr2(&[[0,3]]);
|
|
|
|
Trajectory::new(time, events);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
#[should_panic]
|
|
|
|
fn dataset_wrong_shape() {
|
|
|
|
let time = arr1(&[0.0, 0.2]);
|
|
|
|
let events = arr2(&[[0,3], [1,2]]);
|
|
|
|
let t1 = Trajectory::new(time, events);
|
|
|
|
|
|
|
|
|
|
|
|
let time = arr1(&[0.0, 0.2]);
|
|
|
|
let events = arr2(&[[0,3,3], [1,2,3]]);
|
|
|
|
let t2 = Trajectory::new(time, events);
|
|
|
|
Dataset::new(vec![t1, t2]);
|
|
|
|
}
|