Execute a battery of benchmarks for PyCTBN 🐍📊⏱️
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pyctbn-benchmarks/benchmark.py

62 lines
2.2 KiB

#!/usr/bin/env python3
import glob
import os
import time
from pathlib import Path
from memory_profiler import profile
from pyctbn.legacy import JsonImporter
from pyctbn.legacy import SamplePath
from pyctbn.legacy import StructureConstraintBasedEstimator
@profile
def structure_constraint_based_estimation_example():
Path("./data").mkdir(parents=True, exist_ok=True)
# <read the json files in ./data path>
read_files = glob.glob(os.path.join("./data/", "*.json"))
# <initialize a JsonImporter object for the first file>
importer = JsonImporter(
file_path=read_files[0],
samples_label='samples',
structure_label='dyn.str',
variables_label='variables',
time_key='Time',
variables_key='Name'
)
start_time = time.time()
# <import the data at index 0 of the outer json array>
importer.import_data(0)
# construct a SamplePath Object passing a filled AbstractImporter object
s1 = SamplePath(importer=importer)
# build the trajectories
s1.build_trajectories()
# build the information about the net
s1.build_structure()
# construct a StructureEstimator object passing a correctly build SamplePath object
# and the independence tests significance, if you have prior knowledge about
# the net structure create a list of tuples
# that contains them and pass it as known_edges parameter
se1 = StructureConstraintBasedEstimator(
sample_path=s1,
exp_test_alfa=0.1,
chi_test_alfa=0.1,
known_edges=[],
thumb_threshold=25
)
# call the algorithm to estimate the structure
se1.estimate_structure()
end_time = time.time()
print("Elaspsed time: %d seconds" % (end_time - start_time))
# obtain the adjacency matrix of the estimated structure
print(se1.adjacency_matrix())
Path("./res").mkdir(parents=True, exist_ok=True)
# save the estimated structure to a json file
# (remember to specify the path AND the .json extension)....
se1.save_results("./res/results0.json")
# ...or save it also in a graphical model fashion
# (remember to specify the path AND the .png extension)
se1.save_plot_estimated_structure_graph("./res/result0.png")
structure_constraint_based_estimation_example()