Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
67 lines
2.0 KiB
67 lines
2.0 KiB
import os
|
|
import glob
|
|
import pandas as pd
|
|
import json
|
|
import numpy as np
|
|
from abstract_importer import AbstractImporter
|
|
|
|
|
|
class JsonImporter(AbstractImporter):
|
|
|
|
def __init__(self, files_path):
|
|
self.df_samples_list = []
|
|
self.df_structure = pd.DataFrame()
|
|
self.df_variables = pd.DataFrame()
|
|
super(JsonImporter, self).__init__(files_path)
|
|
|
|
def import_data(self):
|
|
data = self.read_json_file()
|
|
self.import_trajectories(data)
|
|
self.import_structure(data)
|
|
self.import_variables(data)
|
|
|
|
|
|
def import_trajectories(self, raw_data):
|
|
self.normalize_trajectories(raw_data, 0, 'samples')
|
|
|
|
def import_structure(self, raw_data):
|
|
self.df_structure = self.one_level_normalizing(raw_data, 0, 'dyn.str')
|
|
|
|
def import_variables(self, raw_data):
|
|
self.df_variables = self.one_level_normalizing(raw_data, 0, 'variables')
|
|
|
|
def read_json_file(self):
|
|
try:
|
|
read_files = glob.glob(os.path.join(self.files_path, "*.json"))
|
|
for file_name in read_files:
|
|
with open(file_name) as f:
|
|
data = json.load(f)
|
|
return data
|
|
except ValueError as err:
|
|
print(err.args)
|
|
|
|
def one_level_normalizing(self, raw_data, indx, variables_key):
|
|
return pd.json_normalize(raw_data[indx][variables_key])
|
|
|
|
def normalize_trajectories(self, raw_data, indx, trajectories_key):
|
|
for sample_indx, sample in enumerate(raw_data[indx][trajectories_key]):
|
|
self.df_samples_list.append(pd.json_normalize(raw_data[indx][trajectories_key][sample_indx]))
|
|
|
|
def clear_data_frames(self):
|
|
"""
|
|
Rimuove tutti i valori contenuti nei data_frames presenti in df_list
|
|
Parameters:
|
|
void
|
|
Returns:
|
|
void
|
|
"""
|
|
for data_frame in self.df_list:
|
|
data_frame = data_frame.iloc[0:0]
|
|
|
|
|
|
|
|
ij = JsonImporter("../data")
|
|
ij.import_data()
|
|
print(ij.df_samples_list[7])
|
|
print(ij.df_structure)
|
|
print(ij.df_variables)
|
|
|