1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/classes/conditional_intensity_matri...

32 lines
976 B

import numpy as np
class ConditionalIntensityMatrix:
def __init__(self, state_residence_times, state_transition_matrix):
self._state_residence_times = state_residence_times
self._state_transition_matrix = state_transition_matrix
#self.cim = np.zeros(shape=(dimension, dimension), dtype=float)
self._cim = self.state_transition_matrix.astype(np.float)
def compute_cim_coefficients(self):
np.fill_diagonal(self._cim, self._cim.diagonal() * -1)
#print(self._cim)
self._cim = ((self._cim.T + 1) / (self._state_residence_times + 1)).T
#np.fill_diagonal(self.state_transition_matrix, 0)
@property
def state_residence_times(self):
return self._state_residence_times
@property
def state_transition_matrix(self):
return self._state_transition_matrix
@property
def cim(self):
return self._cim
def __repr__(self):
return 'CIM:\n' + str(self.cim)